
[image: image88.png]coordinated Highways Action Response Team

state highway administration

[image: image89.wmf]
R1B3 High Level Design

Contract DBM-9713-NMS

TSR # 9901961

Document # M362-DS-009R0

January 16, 2001

By

Computer Sciences Corporation and PB Farradyne Inc
[image: image90.wmf]
Revision
Description
Pages Affected
Date

0
Initial Release
All
01/03/01

Table of Contents

1-11
Introduction

1.1
Purpose
1-1
1.2
Objectives
1-1
1.3
Scope
1-1
1.4
Design Process
1-1
1.5
Design Tools
1-1
1.6
Work Products
1-2
2
Software Architecture
2-1
2.1
HAR and SHAZAM Device Control
2-1
2.1.1
Text To Speech
2-1
2.1.2
Message Monitoring
2-3
2.1.3
Message Libraries
2-3
2.1.4
Plans
2-4
2.2
DMS use as SHAZAM
2-4
2.3
Arbitration Queues
2-4
2.4
Device Control Status
2-6
2.5
Field Communications
2-6
2.5.1
Communications Servers (FMS Remote PC)
2-7
2.5.2
Port Manager
2-7
2.5.3
HAR Protocol Handler
2-7
2.5.4
SHAZAM Protocol Handler
2-7
2.6
Operations Center Management
2-8
2.7
Database Usage
2-8
2.8
Fault Tolerance
2-8
2.9
ITS National Standards Approach
2-8
3
Models
3-1
3.1
General
3-1
3.1.1
Use Case Diagram
3-1
3.1.2
Class Diagrams
3-5
3.1.3
Sequence Diagrams
3-10
3.2
Operation Center Management
3-11
3.2.1
Use Case Diagram
3-11
3.2.2
Class Diagram
3-12
3.2.3
Sequence Diagrams
3-14
3.3
Traffic Event Response
3-17
3.3.1
Use Case Diagram
3-17
3.3.2
Class Diagram
3-20
3.3.3
Sequence Diagrams
3-25
3.4
Device Queue Management
3-27
3.4.1
Use Case Diagram
3-27
3.4.2
Class Diagram
3-32
3.4.3
Sequence Diagrams
3-35
3.5
HAR Control
3-46
3.5.1
Use Case Diagram
3-46
3.5.2
Class Diagrams
3-52
3.5.3
Sequence Diagrams
3-59
3.6
DMS Control
3-87
3.6.1
Use Case Diagram
3-87
3.6.2
Class Diagram
3-90
3.6.3
Sequence Diagrams
3-95
3.7
View Device Status
3-99
3.7.1
Use Case Diagram
3-99
3.7.2
Sequence Diagrams
3-101
3.8
Device Configuration
3-106
3.8.1
Use Case Diagram
3-106
3.8.2
Sequence Diagrams
3-109
3.9
Stored Message Management
3-116
3.9.1
Use Case Diagram
3-116
3.9.2
Class Diagram
3-118
3.9.3
Sequence Diagrams
3-120
3.10
Plan Management
3-124
3.10.1
Use Case Diagram
3-124
3.10.2
Class Diagram
3-125
3.10.3
Sequence Diagrams
3-127
3.11
Dictionary Management
3-128
3.11.1
Use Case Diagram
3-128
3.11.2
Class Diagram
3-131
3.12
Field Communications
3-133
3.12.1
Class Diagram
3-133

Acronyms

Bibliography

Appendix A – CORBA Information

Appendix B – Use Case Mapping

List of Figures

2-2Figure 1 Text to Speech Conversion Approach

Figure 2 – Device Control Flow
2-5
Figure 3. R1B3HighLevelUseCases (Use Case Diagram)
3-1
Figure 4. CORBAClasses (Class Diagram)
3-5
Figure 5. ExceptionClassDiagram (Class Diagram)
3-7
Figure 6. MonitorControlledResources:Basic (Sequence Diagram)
3-10
Figure 7. ConfigureOperationCenters (Use Case Diagram)
3-11
Figure 8. ResourceManagementClassDiagram (Class Diagram)
3-13
Figure 9. AddOperationCenter:Basic (Sequence Diagram)
3-15
Figure 10. RemoveOperationCenter:Basic (Sequence Diagram)
3-16
Figure 11. ViewOperationCenters:Basic (Sequence Diagram)
3-17
Figure 12. R1B3RespondToTrafficEvents (Use Case Diagram)
3-18
Figure 13. EventManagementClassDiagram (Class Diagram)
3-21
Figure 14. AddHARToResponsePlan:Basic (Sequence Diagram)
3-26
Figure 15. SetHARMessageForUseInResponsePlan:Basic (Sequence Diagram)
3-27
Figure 16. ManageDeviceQueues (Use Case Diagram)
3-28
Figure 17. DeviceQueueManagementClassDiagram (Class Diagram)
3-33
Figure 18. AddMessageToDeviceQueue:Basic (Sequence Diagram)
3-36
Figure 19. ArbQueueCmdStatus:update (Sequence Diagram)
3-37
Figure 20. EvaluateDMSDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)
3-38
Figure 21. EvaluateDMSDeviceQueueEntries:QueueModified (Sequence Diagram)
3-39
Figure 22. EvaluateHARDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)
3-40
Figure 23. EvaluateHARDeviceQueueEntries:QueueModified (Sequence Diagram)
3-41
Figure 24. InterruptArbitrationQueue:Basic (Sequence Diagram)
3-42
Figure 25. PrioritizeDeviceQueue:Basic (Sequence Diagram)
3-43
Figure 26. RemoveMessageFromDeviceQueue:Basic (Sequence Diagram)
3-44
Figure 27. ResumeArbitrationQueue:Basic (Sequence Diagram)
3-45
Figure 28. ViewDeviceQueue:Basic (Sequence Diagram)
3-46
Figure 29. ControlHAR (Use Case Diagram)
3-47
Figure 30. HARControlClassDiagram (Class Diagram)
3-53
Figure 31. SHAZAMControlClassDiagram (Class Diagram)
3-57
Figure 32. ActivateSHAZAM:Basic (Sequence Diagram)
3-60
Figure 33. ActivateSHAZAM:HARActivatingMsgNotifiers (Sequence Diagram)
3-61
Figure 34. BlankHAR:Basic (Sequence Diagram)
3-62
Figure 35. BlankHAR:HARinMaintenanceMode (Sequence Diagram)
3-63
Figure 36. DeactivateSHAZAM:Basic (Sequence Diagram)
3-64
Figure 37. DeactivateSHAZAM:HARDeactivatingMsgNotifiers (Sequence Diagram)
3-65
Figure 38. DeleteHARMessageFromController:Basic (Sequence Diagram)
3-66
Figure 39. PutHARinMaintenanceMode:Basic (Sequence Diagram)
3-67
Figure 40. PutHAROnline:Basic (Sequence Diagram)
3-68
Figure 41. PutSHAZAMinMaintenanceMode:Basic (Sequence Diagram)
3-69
Figure 42. PutSHAZAMOnline:Basic (Sequence Diagram)
3-70
Figure 43. ResetHAR:Basic (Sequence Diagram)
3-72
Figure 44. ResetSHAZAMtoLastKnownState:Basic (Sequence Diagram)
3-73
Figure 45. SetHARMessage:Basic (Sequence Diagram)
3-74
Figure 46. SetHARMessage:HARInMaintenanceMode (Sequence Diagram)
3-76
Figure 47. SetupHAR:Basic (Sequence Diagram)
3-78
Figure 48. StoreHARMessageInController:Basic (Sequence Diagram)
3-79
Figure 49. TakeHAROffline:Basic (Sequence Diagram)
3-80
Figure 50. TakeSHAZAMOffline:Basic (Sequence Diagram)
3-81
Figure 51. TurnOffHARTransmitter:Basic (Sequence Diagram)
3-82
Figure 52. TurnOnHARTransmitter:Basic (Sequence Diagram)
3-83
Figure 53. UpdateHARMessageDateTime:Basic (Sequence Diagram)
3-84
Figure 54. UseDMSAsSHAZAM:ActivateSHAZAMMessage (Sequence Diagram)
3-85
Figure 55. UseDMSAsSHAZAM:DeactivateSHAZAMMessage (Sequence Diagram)
3-86
Figure 56. ViewHARSlotUsage:Basic (Sequence Diagram)
3-87
Figure 57. R1B3ControlDMS (Use Case Diagram)
3-88
Figure 58. DMSControlClassDiagram (Class Diagram)
3-91
Figure 59. BlankDMS:Basic (Sequence Diagram)
3-96
Figure 60. BlankDMS:InMaintenanceMode (Sequence Diagram)
3-97
Figure 61. PutDMSOnline:Basic (Sequence Diagram)
3-98
Figure 62. SetDMSMessage:Basic (Sequence Diagram)
3-99
Figure 63. R1B3ViewDeviceStatus (Use Case Diagram)
3-100
Figure 64. ListenToHARMessage:Basic (Sequence Diagram)
3-103
Figure 65. ListentoHARMonitorLine:Basic (Sequence Diagram)
3-104
Figure 66. ViewHARStatus:Basic (Sequence Diagram)
3-105
Figure 67. ViewSHAZAMStatus:Basic (Sequence Diagram)
3-106
Figure 68. R1B3ConfigureDevices (Use Case Diagram)
3-107
Figure 69. AddHAR:Basic (Sequence Diagram)
3-110
Figure 70. AddSHAZAM:Basic (Sequence Diagram)
3-111
Figure 71. AssociateMessageNotifierWithHAR:Basic (Sequence Diagram)
3-112
Figure 72. DeleteHAR:Basic (Sequence Diagram)
3-113
Figure 73. DeleteSHAZAM:Basic (Sequence Diagram)
3-114
Figure 74. ModifyHARSettings:Basic (Sequence Diagram)
3-115
Figure 75. ModifySHAZAMSettings:Basic (Sequence Diagram)
3-116
Figure 76. R1B3ManageStoredMessages (Use Case Diagram)
3-117
Figure 77. MessageLibraryClassDiagram (Class Diagram)
3-119
Figure 78. CreateHARStoredMessage:Basic (Sequence Diagram)
3-121
Figure 79. ModifyHARStoredMessage:Basic (Sequence Diagram)
3-122
Figure 80. DeleteStoredMessage:Basic (Sequence Diagram)
3-123
Figure 81. ViewHARStoredMessage:Basic (Sequence Diagram)
3-124
Figure 82. R1B3ManagePlans (Use Case Diagram)
3-125
Figure 83. PlanManagementClassDiagram (Class Diagram)
3-126
Figure 84. ModifyPlan:AddHARStoredMessageItem (Sequence Diagram)
3-128
Figure 85. ManageDictionaries (Use Case Diagram)
3-129
Figure 86. DictionaryClassDiagram (Class Diagram)
3-132
Figure 87. FieldCommunications (Class Diagram)
3-134

1 Introduction

1.1 Purpose

This document describes the high level design of the software for release 1, build 3 of the CHART II system. This build of the CHART II system provides an implementation of functionality designed but not implemented in R1B2, namely HAR and SHAZAM device control. This release also adds functionality not included in the R1B2 Design, such as prioritized arbitration queues for DMS and HAR usage arbitration and the ability to dynamically configure operations centers from a CHART II GUI.

1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to provide detailed design and implementation of the requirements identified for R1B3 as stated in the CHART II System Requirements document.

1.3 Scope

This design is limited to release 1, build 3 (R1B3) of the CHART II System. This design does not include designs for components implemented in earlier releases of the CHART II or FMS systems that do not require changes for this release.

1.4 Design Process

This design was created by extracting the use cases from R1B2 which required change for R1B3. New use cases were added for functionality new to R1B3.

Class diagrams from the R1B2 design pertaining to R1B3 changes and new functionality were modified to support new and changed functionality.

Sequence diagrams for each of the use cases included in R1B3 were either changed, created, or in some instances just copied from the R1B2 design and verified for correctness.

This process was iterative in nature – the creation of sequence diagrams sometimes caused us to revisit class diagrams, and vice versa.

After the Use Case, Class Diagrams, and Sequence Diagrams were completed, package and deployment diagrams from R1B2 were modified to include the components added for R1B3.

1.5 Design Tools

The work products contained within this design are extracted from the Tau UML Suite design tool (formerly known as COOL:Jex). Within this tool, the design is contained in the Chart II project, R1B3 configuration, Analysis phase.

1.6 Work Products

This design contains the following work products:

· A UML Use Case diagram which captures the requirements of the system.

· A UML Class diagram, showing the high level software objects which will allow the system to accommodate the uses of the system described in the Use Case diagrams.

· UML Sequence diagrams showing how the classes interact to accomplish each use case.

· A UML Package diagram, showing how the classes are broken up into manageable software packages.

· A UML Deployment diagram, showing which servers will serve each class of objects.

2 Software Architecture

R1B3 utilizes the R1B2 CHART II and FMS architecture. As such, the Common Object Request Broker Architecture (CORBA) is used as the base architecture, with custom built software objects made available on the network to allow their data to be accessed via well defined CORBA interfaces.

The sections below discuss specific elements of the architecture and software components that are created, changed, or used in R1B3.

2.1 HAR and SHAZAM Device Control

Highway Advisory Radio (HAR) devices allow operators to program traffic related messages to be broadcast on a highly localized AM radio station. The HAR devices used in the CHART system are accessed via a standard telephone and were designed to be programmed by a human that calls into the device, enters commands by pushing numbers on the telephone, and records their voice as the message to be broadcast by speaking into the telephone. CHART II automates this process by using telephony boards to issue DTMF tones and play a voice message to program the HAR device. There are certain limitations to this approach, for the CHART II software cannot interpret the spoken voice responses given by the HAR device when commands are entered, and thus the CHART II software always assumes commands it issues to the HAR device are successful. To help compensate for this shortcoming, the CHART II software provides a feature to allow the HAR’s secondary (monitor) telephone line to be accessed, recorded, and played back to the user so that they may confirm the proper operation of the HAR device.

The CHART II software allows the contents of messages to be played on a HAR to be specified as text or recorded voice. When text is used, it is converted to voice using a text to speech engine prior to programming the voice on the HAR device.

SHAZAM devices are fixed highway signs that contain a message that tells motorists to tune their radio to a HAR frequency to hear a traffic alert when the SHAZAM’s beacons are flashing. CHART II provides the ability to control this device in association with a HAR message. SHAZAM devices are associated to a single HAR device. When a message is to be broadcast on a HAR device, message attributes are used to determine which associated SHAZAM devices are to be activated while the message is being broadcast.

2.1.1 Text To Speech

The CHART II system design includes a text to speech conversion service. This service is simply a CORBA IDL interface that is capable of taking text as input and returning audio format data as output. The service will utilize a text to speech conversion engine to perform the data conversion and will provide an audio streaming capability for the converted audio data. This service will be utilized by the FMS subsystem (discussed in section 2.5) when it needs to load messages onto the HAR devices and by the user interface when an operator opts to hear the spoken message that he/she has formatted. The system will utilize one text to speech conversion service per available Lernout & Hauspie speech engine license. The initial deployment of R1B3 includes one conversion service.

The diagram below, “Text to Speech Conversion Approach”, shows the passing of HAR messages in the system. Each box on this diagram represents a CHART II application and each line on this diagram represents the passing of a HAR message from one service to another. Each line is labeled as “Text” or “Voice” to show what type of data is being passed between the applications. As previously mentioned the two points in the system where the converted speech must be audibly spoken are at the point of download to the HAR device, and in the GUI application when an operator would like to preview the message as it will sound when broadcast to the public.

[image: image1.wmf]CHART II GUI

CHART II HAR Service

FMS

Text to Speech Conversion

Service

Text

Text

Text

Voice

Text

Voice

Figure 1 Text to Speech Conversion Approach

A typical scenario for broadcasting a message from a particular HAR device would be as follows:

· The operator would use the HAR message editor in the CHART II GUI application to create a text message.

· The operator chooses to hear the message in audio format so a call will be made to the Text to Speech Conversion Service to convert the text to an audio format.

· The conversion service will then begin streaming the audio data back to the GUI to allow the operator to hear the audio output through his/her workstation speakers.

· After the operator is satisfied with the message he/she may choose to send it to the selected HAR device. The text format message is then passed to the CHART II HAR Service. The HAR service has no need to utilize the audio version of the data so it obtains a voice port from the FMS system, connects the voice port to the HAR, and passes the text data directly to the FMS voice port.

· The FMS voice port needs to convert the text data to an audio format in order to issue the spoken voice commands over the voice port. To do this it calls the Text to Speech converter to perform the conversion and return the audio formatted data.

· Once the FMS voice port has acquired the audio format data, it plays the voice data over the voice port just as if recorded voice was passed.

It is worth noting that because the text to speech conversion service may be called a number of times to convert the exact same text message, it could optimize conversions by storing short term cache copies of recently converted audio files. This might be desirable if the conversion process is time consuming or if the Lernout & Hauspie license time limit becomes a limiting factor.

This design has the advantage of passing text instead of audio data for a majority of the transactions that occur in the system which will reduce bandwidth requirements on the CHART II enterprise network. This design supports further bandwidth reduction through the deployment of additional instances of the speech conversion service. A deployment that includes a speech conversion service for each operator workstation would eliminate the need to pass any voice files over the network for text based HAR messages.

Another advantage of this design is its encapsulation of the selected text to speech conversion engine. This encapsulation minimizes changes to the system should it become desirable to utilize a different engine in the future.

2.1.2 Message Monitoring

Each HAR device has two phone lines used to access it, a programming line and a monitor line. The programming line allows a user to enter commands via the telephone keypad (or via generated DTMF signals) and also allows the recording of voice for broadcast. The monitor line is a phone line that, once connected, allows the user to listen to the message that the HAR is broadcasting. The CHART II system provides a feature that allows a user to listen to the HAR’s monitor line. The system handles such requests by dialing the monitor line of the device and recording the actual audio for a configurable number of seconds. This audio is then streamed to the requesting user’s GUI and played to the user.

The GUI supports a feature that allows a user to select many HAR devices and to listen to the monitor line of each selected HAR in succession. This feature allows a user to verify many HAR messages with no intermediate input required, freeing the user to perform other tasks while they listen.

2.1.3 Message Libraries

Messages for HAR devices can be formatted and stored in logical groupings called message libraries. The base library functionality implemented for R1B2 is used for R1B3 in its entirety, with R1B3 deriving a message class for HAR devices, allowing HAR messages to fit within the existing R1B2 framework.

2.1.4 Plans

Plans for HAR devices can be created to automate the setting of messages on one or more HAR devices. HAR plan items are used to associate a HAR library message, a HAR device, and a SHAZAM direction. The SHAZAM direction is used to initially select SHAZAM devices to be activated when the HAR message is activated when the Plan is used to respond to a traffic event.

The base plan functionality implemented for R1B2 is used for R1B3 in its entirety, with R1B3 deriving a plan item data class for HAR devices, allowing HAR plan items to fit within the existing R1B2 framework.

2.2 DMS use as SHAZAM

DMS devices within the broadcast area of a HAR can be used to display a message similar to that of a SHAZAM, alerting motorists to tune their radio to the HAR frequency to hear a traffic alert and flashing the beacons of the DMS (if so equipped). DMS objects can be associated with HAR devices just as if the DMS were a SHAZAM. This is accomplished through the use of a common interface that both DMS and SHAZAM software objects implement, known as HARMessageNotifier. The HAR object deals only with HARMessageNotifier objects, thus shielding it from the specifics of whether the device is a DMS or SHAZAM (or some device to be invented in the future).

2.3 Arbitration Queues

R1B3 provides objects known as arbitration queues that are used to arbitrate DMS and HAR usage requests made by traffic event response plans. To review, R1B2 enforces the business rule that only allows messages to be placed on on-line devices via a traffic event. This ensures that all device usage can be tracked to a purpose and also allows device usage to be included in a record of actions that were taken in response to each traffic event. Arbitration queues exist to automate the task of determining which message should be given priority when two or more traffic events occur that warrant the use of the same messaging device. The diagram below shows the device control flow that exists in the R1B2 system and is inherited by the R1B3 system. The user adds response plan items to the response plan for a traffic event and executes the plan. When a response plan item is executed, it puts its message on the device’s arbitration queue. When a traffic event is closed, its response plan items remove their messages from the device arbitration queues.

[image: image2.wmf]GUI

Traffic Event

Response Plan Item

DMS

Arbitration Queue

HAR

executeResponsePlan

execute

execute

addMessage

Figure 2 – Device Control Flow

The Arbitration Queue has the responsibility of determining which message should be shown/broadcast by a messaging device, including the case when more than one traffic event response plan calls for the use of the same messaging device. The Arbitration Queue provided in R1B2 is a queue of one element. It arbitrates the use of its associated messaging device by putting the last message received on the device, only allowing this if the user that added the message to the queue is from the same operations center that currently has a message on the device. (Users with special rights can override this behavior)

R1B3 enhances the R1B2 Arbitration Queue to allow any number of traffic events to add entries to a device’s arbitration queue. The queue can hold multiple entries and decides which entry is to be placed on the device based on a priority scheme (TBD). Any time a message is added to or removed from the arbitration queue, the queue evaluates all entries on the queue and decides which message should be shown/broadcast by the queue’s associated device as follows:

· If a message is added to the queue and the queue is empty, the message is put on the device.

· If a message is added to the queue and the queue is not empty, the queue evaluates the messages on the queue (including the new message), determines which message has the highest priority, and places the highest priority message on the device.

· If a message is removed from the queue and this leaves the queue empty, the device is blanked

· If a message is removed from the queue and other messages remain on the queue, the queue evaluates the messages on the queue (excluding the removed message), determines which message has the highest priority, and places the highest priority message on the device.

In addition to the processing described above, Arbitration Queues can allow multiple messages to share a device. In the case of a DMS two single page messages can be concatenated into a single two page message. In the case of a HAR, two messages can be concatenated if the total amount of play time of the messages is less than the amount of recording time available on the HAR device. The system allows this feature to be enabled / disabled on a per device basis and also allows options to be set that determine the types of messages that are eligible for this feature, based on the type of traffic event from which the message was generated.

R1B3 also adds capabilities to the CHART II GUI to allow a user to view the entries in a device’s arbitration queue. Privileged users can manually adjust the priorities of messages to override the queue’s default prioritization scheme. When the priorities of messages on an arbitration queue are manually changed, the arbitration queue evaluates the priorities of the messages on the queue to determine if the message on the queue’s associated device should be changed.

2.4 Device Control Status

R1B3 and its inclusion of arbitration queues changes the manner in which a user may view the status of a device command. The ability to view the status of maintenance mode commands via the Command Status window remains unchanged in R1B3, however the status of commands executed on devices in online mode has changed.

In R1B2, when a traffic event’s response plan is executed, the user can see the status of the device commands in the response plan window. With the inclusion of arbitration queues in R1B3, the execution of a response plan no longer corresponds directly to executing device commands and instead corresponds to placing entries on a device’s arbitration queue. It is the arbitration queue that then executes commands on the device. For this reason, in R1B3 the status of command execution for an online device is no longer shown in the response plans for traffic events and is instead shown as part of the status of the arbitration queue. This status allows one to monitor the queue’s automated operation in addition to viewing the status for any currently executing device command.

2.5 Field Communications

R1B3 uses the base components designed and developed under FMS R1B2 to communicate with HAR and SHAZAM devices. Refer to FMS R1B2 High Level Design for more information on the FMS subsystem. R1B3 extends the FMS subsystem to provide another type of communication port in addition to the existing ISDN and POTS modem ports. This new port type, known as a voice port, provides access to a port on a telephony board. The voice port is capable of providing software access to analog telephone lines for the following purposes:

· Playing a voice file over a telephone

· Playing text over a telephone after conversion to voice

· Recording voice from the telephone

· Sending DTMF signals

· Receiving DTMF signals

The sections below discuss how the existing FMS components are used and extended in R1B3.

2.5.1 Communications Servers (FMS Remote PC)

Communications servers are used in R1B3 to connect to HAR and SHAZAM devices deployed throughout the state of Maryland. A communication server is a PC that is outfitted with one or more pieces of communications hardware, such as Integrated Services Digital Network (ISDN) and Plain Old Telephone System (POTS) modems or telephony cards. Each communications server in the system contains a PortManager software object through which access to the communications resources is granted.

2.5.2 Port Manager

A Port Manager is a software object that manages access to the communications hardware on a Communications Server. The HAR or SHAZAM software object acquires a voice port from one or more Port Manager objects. HAR and SHAZAM objects use voice port objects to command HAR and SHAZAM devices via DTMF. HAR software objects use voice port objects to play recorded voice or voice converted from text to the HAR device so that it may be used by the HAR device for broadcast over the HAR’s radio frequency. The HAR software object also uses voice port objects to connect to a HAR device’s monitor telephone line and record a portion of the message that is playing to allow a CHART II operator to verify that the correct message is playing.

2.5.3 HAR Protocol Handler

The HAR Protocol Handler is a utility class that encapsulates the protocol used to command and control a HAR device. After a voice port is retrieved from a Port Manager and connected to the device, the HAR Protocol handler is used by the HAR object to send the correct sequence of DTMF and voice to the device to program messages and provide the other functionality as specified in this document.

2.5.4 SHAZAM Protocol Handler

The SHAZAM Protocol Handler is a utility class that encapsulates the protocol used to command and control a SHAZAM device. After a voice port is retrieved from a Port Manager and connected to the device, the SHAZAM Protocol handler is used by the SHAZAM object to send the correct sequence of DTMF to the device to enable or disable its flashers.

Operations Center Management

Objects that represent CHART operations centers exist in the CHART II software. Each workstation connected to the CHART II system has an identifier that indicates the operations center where the workstation resides. When a user logs into the CHART II system, the GUI attempts to login to the operations center software object specified by the ID stored on the PC.

The R1B2 software requires that operations centers be pre-defined in the CHART II database. Additions or deletions of operations centers to/from the system require the UserManager service to be restarted to recognize the new list of valid operations centers.

R1B3 adds functionality to allow operation centers to be added to or removed from the system at run-time. Operations centers appear in the GUI’s navigator and privileged users can remove an operations center from the system or add an operations center to the system. This allows operations centers to be added to the system as CHART II is deployed to various sites instead of requiring the operations centers to be pre-defined in the system.

2.6 Database Usage

R1B3 will use the CHART II database for object persistence. The database deployed for R1B2 will be modified to add tables necessary to persist HAR and SHAZAM objects. Modifications are also required to allow for the storage of HAR plan items and stored messages. Existing tables used to persist arbitration queue entries may require changes to allow priority information to be stored with each entry.

2.7 Fault Tolerance

Because R1B3 is built as a functional addition to R1B2 and utilizes the existing CHART II architecture, it inherits the fault tolerance that exists with the R1B2 deployment. Like R1B2, R1B3 is designed as a distributed system for enhanced fault tolerance and scalability, however the initial deployment uses a single CHART II server.

2.8 ITS National Standards Approach

Components to be developed as a part of R1B3 are designed to be compliant with the current Intelligent Transportation System (ITS) national standards in both the Center-to-Center and Center-to-Field requirements. The Center-to-Center requirements are met because the CORBA interfaces used to interact with HAR and SHAZAM devices are CORBA, one of two methods approved by the National Transportation Communications for ITS Protocols (NTCIP) Center-to-Center committee for communication between ITS software components.

Center-to-Field standards for HAR and SHAZAM devices do not exist and therefore by default this design meets the current NTCIP Center-to-Field standards. Because of this lack of standards, the communications to the HAR and SHAZAM devices uses the manufacturer protocol, encapsulated in the Protocol Handler objects shown within this design. Should an NTCIP compliant device exist in the future, a protocol handler that performs NTCIP communications would be written and used in this design where HAR and SHAZAM protocol handlers are now used.

3 Models

This section provides software designs modeled using the Unified Modeling Language (UML). A section is provided for each functional area of CHART II R1B2 to be changed or added in R1B3.

3.1 General

3.1.1 Use Case Diagram

This diagram shows the main uses of the system at a very high level. Many of the use cases on this diagram are further detailed on a corresponding use case diagram. When this is the case, the use case description will contain a reference to the appropriate diagram.

[image: image3.emf]Administrator

Configure

Operation

Centers

Monitor

Controlled

Resources

Manage

Device

Queues

Control HAR

System

All use cases

use this

Operator

alarm

Manage Plans

Configure Devices

RespondTo

Traffic Event

Manage Stored

Messages

View Device

Status

Log System

Operation

Control DMS

Manage

Dictionaries

Figure 3. R1B3HighLevelUseCases (Use Case Diagram)

3.1.1.1 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.1.2 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. Please refer to the ConfigureDevices use case diagram for detailed descriptions of device configuration activities.

3.1.1.3 Control DMS (Use Case)

The following DMS sign models are supported: FP1001, FP2001, FP9500, TS3801, ADCO, Display Solutions, Sylvia. Please refer to the ControlDMS use case diagram for complete details of supported DMS control activities.

3.1.1.4 Control HAR (Use Case)

Highway Advisory Radio (HAR) allows the user to broadcast a message over an AM radio channel to inform motorists of traffic conditions, incidents, events, etc. The user can set the message on a HAR device, blank the message (which places the default message on the device), reset the device, and take the device offline from the Chart II system or place the device back on-line. Please refer to the ControlHAR use case diagram for complete details of supported HAR control activities.

3.1.1.5 Log System Operation (Use Case)

The system shall log operations that are performed by users. View only type accesses to the system are not logged. Attempts by a user to access parts of the system for which they do not have the proper rights are also logged.

3.1.1.6 Manage Device Queues (Use Case)

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device when more than one user needs to display a message on the device. When a user is managing a traffic event and wishes to put a message on a HAR or DMS as part of the response for the traffic event, the message is not sent directly to the device and is instead sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm that determines which message is to be sent to the device based on the source of the message and the type of traffic event from which the message was sent. This determination of the message to put on the device is done every time a message is removed from the queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed when the device is online.

The system allows users to view device queues to determine the priority of the messages in the queue, see the message that is currently active, and manually re-prioritize the queue.

3.1.1.7 Configure Operation Centers (Use Case)

A user with proper functional rights can configure operations centers that are known to the system. Administrators can add and remove operations centers. Users can also view the operations centers that have been defined in the system using the navigator in the CHART II GUI.

3.1.1.8 Manage Dictionaries (Use Case)

An administrator (operator with the correct functional rights) may manage system dictionaries. Please refer to the ManageDictionaries use case diagram for detailed descriptions of dictionary management activities.

3.1.1.9 Manage Stored Messages (Use Case)

An operator with the correct functional rights may manage stored messages. Please refer to the ManageStoredMessages use case diagram for detailed descriptions of stored message management activities.

3.1.1.10 Manage Plans (Use Case)

An operator with the correct functional rights may manage plans. Please refer to the ManagePlans use case diagram for detailed descriptions of plan management activities.

3.1.1.11 Monitor Controlled Resources (Use Case)

Some objects in the system provide the capability for an operations center to take control of the object and block other operations centers from performing certain operations on the object. Some examples of such objects are Traffic Events and also DMS, HAR, and SHAZAM objects that have been placed in maintenance mode. An operation center must have at least one user logged in while the operation center has control of one or more of these objects. The system will not let an operator log out from an operations center that has control of one or more of these objects if there are no other users logged into the operation center. The system will automatically monitor these objects to detect the case where no users are logged into an operations center that has control of one or more of these objects. This condition could arise if the CHART II GUI workstation is powered off without the user logging out from CHART II.

3.1.1.12 RespondTo Traffic Event (Use Case)

An operator may use the system to respond to traffic events which may include the control of field devices. Please refer to the RespondToTrafficEvent use case diagram for details.

3.1.1.13 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.1.14 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.1.15 View Device Status (Use Case)

The user may view the status of a device. The information that encompasses a device status depends on the device type and sometimes even the device model within a device type. Device status is viewable in the CHART II GUI in the system navigator.

Class Diagrams

3.1.1.16 CORBA Classes Class Diagram

The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB Vendor and are referenced by other packages' class or sequence diagrams.

[image: image4.emf]com.ooc.CosEventChannelAdmin.impl.EventChannel

POAManager

«interface»

POA

«interface»

CosTrading.Lookup

«interface»

CosTrading.Register

«interface»

CosEvent.

PushConsumer

«interface»

CosEventChannelAdmin.

EventChannel

«interface»

ORB

«interface»

activate_object

deactivate_object

activate()

deactivate()

queryexport

withdraw

pushfor_consumers()

for_suppliers()

destroy()

init()

connect()

disconnect()

resolve_initial_references()

string_to_object()

object_to_string()

Figure 4. CORBAClasses (Class Diagram)

3.1.1.16.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel. The event service provided by the vendor simply serves one of these objects. The Extended Event Service serves a factory that allows multiple instances of the vendor supplied event channel to be created.

3.1.1.16.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information uses to push event updates to consumers who have previously attached to the channel.

3.1.1.16.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and consumers of information.

3.1.1.16.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Lookup is the interface that applications use to discover objects which have previously been published.

3.1.1.16.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object publication and discovery respectively. The CosTrading.Register is the interface to the trading service that server applications use to publish objects in order to make them available for client applications to discover.

3.1.1.16.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote procedure call mechanism for inter-process communication. The ORB is the basic mechanism by which client applications send requests to server applications and receive responses to those requests from servers.

3.1.1.16.7 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate the POA.

3.1.1.16.8 POA (Class)

This object is a Portable Object Adapter which allows software objects to be connected to the ORB.

3.1.1.17 Exception Class Diagram

These classes represent the exceptions that the CHART II servers may throw as a result of a client invocation. They are shown on the included sequence diagrams as unsuccessful results that are returned to the actor. Each of these classes represents a known potential system failure with the exception of the CHART2Exception class which is used to report general error conditions. These classes will be defined in the system IDL and will be used to signify failures to invoking clients.

[image: image5.emf]CHART2ExceptionAccessDenied

HasControlledResources

LoginFailure

InvalidRole

InvalidFunctionalRight

UserLoggedIn

UnknownUser

RoleInUse

SpecifiedObjectNotFound

DuplicateAddedSlotInUse

HARMessageNotifierActive

InvalidState

CommFailure

ResourceControlConflict

DissaprovedMessageContentUnknownTrafficEventType

FunctionalRight right

string reason

m_reason

m_errorCode

m_debugInfo

Figure 5. ExceptionClassDiagram (Class Diagram)

3.1.1.17.1 CommFailure (Class)

This exception is used to indicate an error occurred while communicating with a device. The exception contains a textual description of the exact problem that was encountered, an error code, and detailed debugging information.

3.1.1.17.2 DuplicateAdded (Class)

Used to indicate that an attempt was made to add an object which was already in the collection.

3.1.1.17.3 InvalidFunctionalRight (Class)

This class represents an exception thrown when an attempt is made to add an invalid functional right to a role.

3.1.1.17.4 HARMessageNotifierActive (Class)

This exception is thrown when a device is still notifying the public about a HAR message in a situation where the notifier is not expected to be active.

3.1.1.17.5 InvalidRole (Class)

This class represents the exception thrown when the specified role name does not exist in the database.

3.1.1.17.6 InvalidState (Class)

This exception is thrown when some state is invalid and the operation cannot be performed.

3.1.1.17.7 LoginFailure (Class)

This class represents an exception which describes a login failure.

3.1.1.17.8 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

3.1.1.17.9 CHART2Exception (Class)

Generic exception class for the CHART II system. This class can be used for throwing very generic exceptions which require no special processing by the client. It supports a reason string which may be shown to any user and a debug string which will contain detailed information useful in determining the cause of the problem.

3.1.1.17.10 DissaprovedMessageContent (Class)

This exception is used to indicate that the message content is not approved. This could occur if the message text includes banned words or if the beacons are set ON when the message text is blank.

3.1.1.17.11 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do something which requires that no resources be controlled, yet the Operations Center which the user is logged in to is still controlling one or more shared resources.

3.1.1.17.12 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the resource is under the control of a different operations center and the requesting user does not have the functional right to override the restriction.

3.1.1.17.13 SlotInUse (Class)

This class represents an exception thrown when an attempt is made to store or delete a message in a slot of a HAR which is currently active.

3.1.1.17.14 UnknownTrafficEventType (Class)

This exception is thrown when the event type is invalid or if the event type is valid but the recipient does not know how to deal with it.

3.1.1.17.15 UserLoggedIn (Class)

This class represents an exception thrown when an attempt is made to delete a user who is currently logged in.

3.1.1.17.16 RoleInUse (Class)

This class represents an exception thrown when an attempt is made to delete a role which has users assigned to it.

3.1.1.17.17 SpecifiedObjectNotFound (Class)

This exception is used to indicate that the specified object was not found.

3.1.1.17.18 UnknownUser (Class)

This class represents an exception thrown when a user name is passed that is not in the user database.

Sequence Diagrams

3.1.1.18 MonitorControlledResources:Basic (Sequence Diagram)

There is a requirement that all shared resources that are in use have an operations center responsible for them. The system enforces this rule as much as possible, however a monitor is used to detect rare occasions that may occur, such as a power outage at an operations center that is in control of one or more shared resources. The process of monitoring shared resources is delegated to each shared resource manager that exists in the system. Periodically, a shared resource manager checks each of its resources for controlling operations centers. It uses a summary of the operations centers that are controlling its resources and calls each operations center to check the number of logged in users at the operations center. The operations center checks each user login session to make sure it is still alive when it determines its count of logged in users. Should a shared resource manager detect a resource under control of an operations center that has no logged in users, the shared resource manager pushes an event to notify others. This condition can occur when there is only one user logged in to an operations center and that user is forcibly logged out by another user with the required functional rights. In the normal course, a user may not be allowed to logout from the system if that user happens to be the only user logged in to an Operations center that controls one or more resources.

[image: image6.emf]SharedResourceOperationsCenterCosEvent.PushConsumer

Push an alarm

indicating that

there is a resource

controlled by an

operations center

where nobody is

logged in.

System Watchdog

SharedResourceManager

getNumLoggedInUsers

numLoggedInUsers

[numLoggedInUsers < 1]

push

monitorControlledResources

getControllingOpCenter

Controlling Op Center

[* for each shared

resource]

Figure 6. MonitorControlledResources:Basic (Sequence Diagram)

Operation Center Management

3.1.2 Use Case Diagram

A user with proper functional rights can configure operations centers that are known to the system. Administrators can add and remove operations centers. Users can also view the operations centers that have been defined in the system using the navigator in the CHART II GUI.

[image: image7.emf]Add

Operation

Center

View

Operation

Centers

Remove

Operation

Center

Operator

Figure 7. ConfigureOperationCenters (Use Case Diagram)

3.1.2.1 Add Operation Center (Use Case)

A user with the proper functional rights can add an operation center to the system.

3.1.2.2 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.2.3 Remove Operation Center (Use Case)

A user with proper functional rights can remove an operation center from the system. The system shall not allow an operations center to be removed if there are users currently logged into that operations center.

3.1.2.4 View Operation Centers (Use Case)

The CHART II GUI's navigator shall allow a user to view the operations centers that are defined in the system.

Class Diagram

[image: image8.emf]SharedResource

«interface»

SharedResourceManager

«interface»

UserLoginSession

TransferableSharedResource

1*

*Owns

Is Owned By1

*0..1

1*

OperationCenterFactory

*

1

UniquelyIdentifiable

«interface»

Organization

OperationsCenter

createOperationCenter

getOperationCenterList

remove

setControllingOpCenter()

clearControllingOpCenter()

getResources

getControlledResources(OpCenter)

hasControlledResources(OpCenter)

forceLogout

getOpCenter

getUsername

ping

getID

getName

changeUser

forceLogout

getControlledResources

getID

getLoginSessions

getName

getNumLoggedInUsers

isUserLoggedIn

loginUser

logoutUser

transferSharedResources

verifyUserPassword

getDispatchUnits

getResponseParticipantTypes

getEligibleResponseParticipants

addEligibleResponseParticipant

removeEligibleResponseParticipant

remove

getControllingOpCenter

getControllingOpCenterName

getOwnerOrgID

Figure 8. ResourceManagementClassDiagram (Class Diagram)

3.1.2.5 OperationCenterFactory (Class)

The OperationCenterFactory provides a means to create new OperationsCenter objects and add them to the system.

3.1.2.6 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used to log users into the system. If the username and password provided to the loginUser method are valid, the caller is given a token that contains information about the user and the functional rights of the user. This token is then used to call privileged methods within the system. Shared resources in the system are either available or under the control of an OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it can ensure that the last user does not log out while there are shared resources under its control. This list of logged in users is also available for monitoring system usage or to force users to logout for system maintenance.

3.1.2.7 Organization (Class)

An organization is any agency or entity that participates in the CHART II system.

3.1.2.8 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.2.9 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.1.2.10 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.2.11 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is logged into the system. This object is served from the GUI and provides a means for the servers to call back into the GUI process.

3.1.2.12 TransferableSharedResource (Class)

This interface represents a shared resource that can be transferred from its currently controlling operations center to any other operations center that currently has users logged in.

Sequence Diagrams

3.1.2.13 AddOperationCenter:Basic (Sequence Diagram)

A user with the proper functional rights may add an operations center to the system.

[image: image9.emf]createOperationCenter

"Check User Rights"

[No Rights]

Access Denied

create

"Update Database"

export

push "New Operations Center"

success

POA

activate_object

Administrator

OperationCenterFactoryCosTrading:Register

OperationsCenter

CosEvent:PushConsumer

Figure 9. AddOperationCenter:Basic (Sequence Diagram)

3.1.2.14 RemoveOperationCenter:Basic (Sequence Diagram)

A user with the proper functional rights may remove an operations center from the system.

[image: image10.emf]deactivate_object

withdraw

Administrator

OperationCenterFactoryOperationsCenterCosEvent:PushConsumer

remove

[No Rights]

AccessDenied

remove

"Check User Rights"

push "Operation Center Removed"

CosTrading:RegisterPOA

"Update Database"

getNumLoggedInUsers

[if > 0]

Chart2Exception

[if > 0]

Chart2Exception

getControlledResources

Success

Figure 10. RemoveOperationCenter:Basic (Sequence Diagram)

3.1.2.15
ViewOperationCenters:Basic (Sequence Diagram)

A user with the proper functional rights may view the operations center data in the system.

[image: image11.emf]Operator

OperationCenterFactory

getOperationCenterList

"Check User Rights"

[No Rights]

Access Denied

success

AddOperationCenter

push "Add Operation Center"

push "Add Operation Center"

At GUI startup all

factories are retrieved

from the CORBA Trading

 Service.

During runtime, an operator

with the correct privileges

may add a new Operations Center

to the system. The OperationCenterFactory

used to create a new Operations Center

notifies all users of the change by pushing

events through the CORBA event service.

Operator

CosTrading:RegisterCosEvent:PushConsumer

See the diagram

AddOperationCenter

for specific sequence.

query

[for all OperationsCenter objects]

Figure 11. ViewOperationCenters:Basic (Sequence Diagram)

Traffic Event Response

3.1.3 Use Case Diagram

The system allows an operator to control devices in response to an event through the use of a response plan. The user may add devices to the plan, select the desired state of the devices, then activate the plan. Any of the devices used by the event response plan may be deactivated while the event is open by removing the item for that device from the plan. When the event is closed, if the response plan is active, it will be deactivated automatically.

[image: image12.emf]«uses»

«uses»

«uses»

«extends»

«extends»

«extends»

Add HAR to

Response Plan

Set HAR Message

for use in

Response Plan

Operator

Execute

Response

Add Device

to Response

Configure

 Response

Revoke

Response

Items

Add Message

To Device

Queue

Remove Message

From Device

Queue

Close Event

Figure 12. R1B3RespondToTrafficEvents (Use Case Diagram)

3.1.3.1 Add Device to Response (Use Case)

An operator with the correct functional rights may add a device to the response plan of a traffic event. Please refer to the extending use cases to see the types of devices that can be added to a response plan.

3.1.3.2 Add HAR to Response Plan (Use Case)

An operator with the correct functional rights may add a HAR to the response plan of a traffic event. Doing so will cause the message on that HAR to be set when the response plan is executed. In this version of the system, the HAR will be added with a blank initial message which the operator may modify before executing the plan. In future releases, the HAR object could suggest a message based on the properties of the traffic event whose response plan it was being added to.

3.1.3.3 Configure Response (Use Case)

An operator with the correct functional rights may configure a response plan to control devices in response to a traffic event. Please refer to the extending use cases for details.

3.1.3.4 Execute Response (Use Case)

An operator with the correct functional rights may execute the response plan for a particular traffic event. Performing this operation will place the message from each response plan item on the arbitration queue of the corresponding device.

3.1.3.5 Add Message To Device Queue (Use Case)

When a traffic event response plan is executed, the specified messages are placed in the specified devices' arbitration queues. When an item is added to an arbitration queue, it is held with other messages that have been added to the queue. The system selects the highest priority message to display / play on the device. A message that does not have the highest priority at one time may become the message with highest priority in the future due to messages being removed from the queue or by manual intervention by an operator.

3.1.3.6 Close Event (Use Case)

An operator with correct functional rights can close a traffic event. If the traffic event has executed response plan items, they will be deactivated.

3.1.3.7 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.3.8 Revoke Response Items (Use Case)

A user with the proper functional rights can remove a device from the response plan of a traffic event. The system will also automatically perform this operation when a traffic event is closed. When a response plan item is removed from the response plan, the message specified in the item is removed from the specified device's arbitration queue.

3.1.3.9 Set HAR Message for use in Response Plan (Use Case)

An operator with the correct functional rights may modify the message which will be broadcast from a HAR when the traffic event's response plan is executed. This can be done using the HAR message editor, or dragging a HAR stored message to the item in the response plan.

3.1.3.10 Remove Message From Device Queue (Use Case)

When a response plan item is removed from a traffic event's response plan, the item removes its message from the queue of the device specified in the item. This causes the queue to evaluate the remaining messages on the queue (if any) and either set the device to the next highest priority message or blank the device.

Class Diagram

[image: image13.emf]TrafficEvent

ResourceDeployment

CongestionEvent

Location

WeatherServiceEvent

ActionEvent

DisabledVehicleEvent

GeoLocatable

«interface»

DatabaseLogger

CommandStatus

UniquelyIdentifiable

«interface»

ResponseParticipation

*1

0..1

1

*1

*

1

1

1

*1

11

*

1

ResponsePlanItemData

WeatherSensorEvent

ResponsePlanItem

DMSRPIDataHARRPIData

Lane

TrafficEventGroup

SafetyMessageEvent

TransferableSharedResource

«interface»

SharedResourceManager

«interface»

TrafficEventFactory

SpecialEvent

PlannedRoadwayClosure

Incident

RoadwayEvent

OrganizationParticipation

getCurrentEvent()

addLogEntry()

addResponseItem(ResponsePlanItemData)

removeResponseDevice()

executeResponse(items)

getAssociatedEvents()

getBasicEventData()

setBasicEventData()

addResponseParticipation(type, name)

removeResponseParticipation()

getResponseParticipations()

close()

isClosed()

getClosureTime()

associateEvent()

changeEventType()

takeOffline()

getHistory(maxCount)

getHistory(filter, maxCount)

m_locationDesc

m_source

m_county

m_description

m_sceneCleared

m_sceneClearedTime

m_delayCleared

m_delayClearedTime

m_isFalseAlarm

m_falseAlarmTime

m_isConfirmed

m_confirmedTime

m_openedTime

m_closedTime

setDetailedDescription()

getDetailedDescription()

createEvent(typeCode)

getSpecialEventType()

setSpecialEventType()

setDetailedDescription()

getDetailedDescription()

m_descriptionTypeSpecialEventCode

getIncidentData()

setIncidentData()

getIncidentVehicleData()

setIncidentVehicleData()

getRoadConditionsData()

setRoadConditionsData()

getLanes()

setLaneState(offsetFromLeft, direction, state)

setParticipationData()

getParticipationData()

-remove()

m_organizationName

m_notified

m_timeNotified

m_responded

m_timeResponded

addLogEntry()

addResponseParticipation(type, name)

addResponseItem()

associateEvent()

changeType(typeCode)

close()

executeResponse()

getAssociatedEvents()

getClosureTime()

getHistory(maxCount)

getHistory(filter, maxCount)

getResponseParticipations()

hasSceneBeenCleared()

hasDelayCleared()

isClosed()

isPrimary()

removeResponseParticipation()

removeResponseDevice()

setPrimary()

setSecondary()

takeOffline()

getDeploymentData()

setDeploymentData()

-remove()

m_resourceName

m_resourceType

m_notified

m_timeNotified

m_arrived

m_timeArrived

m_departed

m_timeDeparted

isRecurring()

setRecurring()

m_recurring

getDesc()

m_textDescription

getRoadConditionsData()

setRoadConditionsData()

getActionEventData()

setActionEventData()

getDisabledVehicleData()

setDisabledVehicleData()

addEntry(logEntry)

addEntry(logEntry, eventID)

getEntries(maxCount)

getEntries(filter, maxCount)

getParticipantName()

getParticipantType()

execute(responsePlanItem, trafficEvent)

revokeExecution()

eventTypeChanged()

eventTransferred()

getResponseDeviceID()

-m_responseDeviceID

getRoadConditionsData()

setRoadConditionsData()

setItemData()

getItemData()

execute(trafficEvent)

remove()

getResponseDevice()

hasBeenExecuted()

setActive()

setInactive()

getDescription()

setDescription()

eventTypeChanged(trafficEvent)

eventTransferred(trafficEvent)

setOpenState()

isOpen()

overrideStateChangeTime()

getStateChangeTime()

m_offsetFromLeft

m_type

m_description

m_isOpen

m_direction

m_stateChangeTimeStamp

Figure 13. EventManagementClassDiagram (Class Diagram)

3.1.3.11 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not fit well into the other event categories. An example of this type of event would be debris in the roadway.

3.1.3.12 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve information from the database. This class also provides a mechanism for the user to filter and retrieve logs that meet a specific criteria.

3.1.3.13 DMSRPIData (Class)

This interface is supported by objects that can put a message on a DMS in response to a traffic event.

3.1.3.14 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface will be expanded in future releases to include the information necessary for placing objects on a system map.

3.1.3.15 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves one or more vehicles and roadway lane closures.

3.1.3.16 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will be expanded in future releases to include interfacing with the EORS legacy system. The EORS system is used by Maryland to manage planned roadway closures.

3.1.3.17 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or professional sporting event.

3.1.3.18 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

3.1.3.19 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResonseDevice as soon as it is appropriate.

3.1.3.20 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the heirarchy provides a break off point for traffic event types that pertain to other modals.

3.1.3.21 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.1.3.22 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds the message to the arbitration queue of the specified HAR. When the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR's arbitration queue to remove the message.

3.1.3.23 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.3.24 Lane (Class)

This object represents a single traffic lane, shoulder or ramp.

3.1.3.25 ResponseParticipation (Class)

This class contains methods that are common to all types of reponse participants.

3.1.3.26 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another organization of a traffic event.

3.1.3.27 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety message to a device.

3.1.3.28 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.1.3.29 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.3.30 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the system.

3.1.3.31 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring through the use of an attribute.

3.1.3.32 Location (Class)

This class is used to store location information for a class. It will be expanded in future releases to contain geographic information.

3.1.3.33 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene of a traffic event.

3.1.3.34 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the same traffic event that an operations center is working. A particular traffic event may initially be created as a particular type of event such as DisabledVehicleEvent and later be converted to another type of event such as Incident. The group stores all information which is common to all of these TrafficEvent objects which represent the same roadway event.

3.1.3.35 TransferableSharedResource (Class)

This interface represents a shared resource that can be transferred from its currently controlling operations center to any other operations center that currently has users logged in.

3.1.3.36 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the system's weather monitoring devices. Operators will need to manually enter the information in these events for this release. In future releases, these events will be automatically generated by the system.

3.1.3.37 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.3.38 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by an operator in response to receiving an alert from the national weather service.

Sequence Diagrams

3.1.3.39 AddHARToResponsePlan:Basic (Sequence Diagram)

An operator with the correct functional rights may add a device to the response plan of an open traffic event. Because the traffic event is a shared resource, the operator must be logged in at the operations center that is responsible for the traffic event, or must have an override functional right to perform this action. If the operator passes the aforementioned checks a response plan item is created and a device specific data object (delegate) is set in the response plan item. If the device is a DMS, the delegate is a DMSRPIData object, and if the device is a HAR the delegate is a HARRPIData object. The item will be added to the plan, the database will be updated, and a CORBA event will be pushed to notify other system components of the change to the traffic event object.

[image: image14.emf]create

"Update Database"

[event closed]

InvalidState

ResponsePlanItemData

TrafficEventGroup

The type of response

plan item data created will

depend on the type of

device the user is adding.

ResponsePlanItem

Operator

CosEvent.PushConsumerTrafficEvent

create

addResponseItem

[not from controlling

op center and no override rights]

ResourceControlConflict

getControllingOpCenter

[no rights]

AccessDenied

"Check User

Rights"

push "Response Plan Item Added"

[Device already in Response Plan]

DuplicateAdded

addResponseItem

setItemData

Figure 14. AddHARToResponsePlan:Basic (Sequence Diagram)

3.1.3.40 SetHARMessageForUseInResponsePlan:Basic (Sequence Diagram)

An operator with the correct functional rights may modify the message that will be sent to a HAR when the traffic event's response plan is executed. Because the traffic event is a shared resource, the operator must be logged in at the operations center that is responsible for the traffic event, or must have an override functional right to perform this action. If the operator passes the aforementioned checks, the message contents and the database will be updated, and a CORBA event will be pushed to notify other system components of the change.

[image: image15.emf]Dictionary

The GUI will perform checks for approved and banned words.

No server side checking will be performed at this point, because

a server side check will be performed by the HAR when the item is

executed.

TrafficEvent

An event is being pushed

to update the event info

in the system.

CosEvent:PushConsumerResponsePlanItem

Operator

[not from controlling op center

and not override]

ResourceControlConflict

setItemData

[no rights]

AccessDenied

[banned words found]

DisapprovedMessageContent

push "Response Plan Item Message Modified"

checkForBannedWords

[unknown words found]

wordSuggestions

HARRPIData

performApprovedWordsCheck

getControllingOpCenter

"Update Database"

[unexpected error]

CHART2Exception

create

Figure 15. SetHARMessageForUseInResponsePlan:Basic (Sequence Diagram)

Device Queue Management

3.1.4 Use Case Diagram

Each HAR and DMS device contains a queue that serves to arbitrate the usage of the device when more than one user needs to display a message on the device. When a user is managing a traffic event and wishes to put a message on a HAR or DMS as part of the response for the traffic event, the message is not sent directly to the device and is instead sent to the device's arbitration queue. This arbitration queue uses a prioritization algorithm that determines which message is to be sent to the device based on the source of the message and the type of traffic event from which the message was sent. This determination of the message to put on the device is done every time a message is removed from the queue or added to the queue.

All messages set on DMS or HAR devices when the device is online must pass through the device's queue via a traffic event. No direct setting of the DMS or HAR message is allowed when the device is online.

The system allows users to view device queues to determine the priority of the messages in the queue, see the message that is currently active, and manually re-prioritize the queue.

[image: image16.emf]«uses»

«uses»

«uses»

«uses»

«uses»

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

Evaluate

HAR Device

Queue Entries

Add Message

To Device

Queue

Remove Message

From Device

Queue

Evaluate

Device

Queue

Entries

System

Execute

Response

Respond To

Traffic Events

triggers

triggers

triggers

Revoke

Response

Items

Set HAR

Message

Set DMS

Message

Blank DMS

Blank HAR

View

Device

Queue

Prioritize

Device

Queue

Operator

Evaluate

DMS Device

Queue Entries

Figure 16. ManageDeviceQueues (Use Case Diagram)

3.1.4.1 Add Message To Device Queue (Use Case)

When a traffic event response plan is executed, the specified messages are placed in the specified devices' arbitration queues. When an item is added to an arbitration queue, it is held with other messages that have been added to the queue. The system selects the highest priority message to display / play on the device. A message that does not have the highest priority at one time may become the message with highest priority in the future due to messages being removed from the queue or by manual intervention by an operator.

3.1.4.2 Blank DMS (Use Case)

A DMS can be blanked when the DMS is online or in maintenance mode. When the DMS is online, it is only blanked by the device's arbitration queue when the arbitration queue becomes empty. When the DMS is in maintenance mode, the DMS can be blanked directly by the user if they have the proper functional rights.

A DMS can be blanked indirectly by other commands, such as placing the device online, offline or in maintenance mode or by resetting the device.

When a DMS that has beacons is blanked, its beacons are turned off.

3.1.4.3 Blank HAR (Use Case)

A HAR can be blanked if it is online or in maintenance mode. When the HAR is online, the device is only blanked if there are no traffic events that have currently requested that a message be placed on the device. When the HAR is in maintenance mode, the HAR can be blanked directly by the user.

A HAR can be blanked indirectly through administrative functions such as placing the device online or resetting the device.

When a HAR is blanked, the system will set the HAR's default message to be the current message. Additionally, the system will deactivate any associated active SHAZAMs before blanking the HAR itself.

3.1.4.4 Prioritize Device Queue (Use Case)

A user with the proper functional rights can manually change the priority of items on a device's queue to override the queue's automated prioritization scheme. If this manual re-prioritization causes a message on the queue to have a priority higher than the message that is currently on the device, the device's queue will change the message to the message of highest priority.

3.1.4.5 Evaluate DMS Device Queue Entries (Use Case)

The system shall evaluate entries placed on a DMS's arbitration queue in response to traffic events. The system shall use a priority algorithm (TBD) to determine which message shall be placed on the DMS device. The system shall evaluate entries when a new entry is added, when an entry is removed, and when notified by the DMS device object that a previous asynchronous request has completed. When the queue is evaluated, the highest priority message shall be set on the DMS device, unless it is currently already set on the DMS device. When an evaluation occurs and the queue has become empty, the queue shall blank the DMS. The queue shall allow the concatenation of 2 single page messages to be set on the DMS device according to certain rules and configuration settings. The rules that govern this message concatenation feature are TBD.

3.1.4.6 Execute Response (Use Case)

An operator with the correct functional rights may execute the response plan for a particular traffic event. Performing this operation will place the message from each response plan item on the arbitration queue of the corresponding device.

3.1.4.7 Evaluate Device Queue Entries (Use Case)

When the contents of a device queue are altered, it shall evaluate the entries on the queue to determine what action (if any) to take on its associated device. When a device queue becomes empty, it shall blank its corresponding device. When a device queue is evaluated and it is not empty, it shall choose the highest priority message and set this message as the device's current message if it is not set already.

3.1.4.8 Evaluate HAR Device Queue Entries (Use Case)

The system shall evaluate entries placed on a HAR's arbitration queue in response to traffic events. The system shall use a priority algorithm (TBD) to determine which message shall be placed on the HAR device. The system shall evaluate entries when a new entry is added, when an entry is removed, and when notified by the HAR device object that a previous asynchronous request has completed. When the queue is evaluated, the highest priority message shall be set on the HAR device, unless it is already currently set on the HAR device. When an evaluation occurs and the queue has become empty, the queue shall set the HAR device to its default message. The queue shall allow the concatenation of multiple messages to be set on the HAR device as the recording space on the HAR allows and according to configuration settings and concatenation rules. The rules that govern this feature are TBD.

3.1.4.9 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.4.10 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the message of the DMS to be the message that is on the queue that has the highest priority. When the DMS is in maintenance mode, an operator with proper functional rights can set the message on a DMS directly.

3.1.4.11 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by an administrator when the device is in maintenance mode. The message activation may specify messages which were previously stored in message slots in the controller or a message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use the default header and trailer or just use the message body for the entire message. Messages activated in this manner shall be loaded into the HAR controller in the slot designated for immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated or not.

3.1.4.12 Remove Message From Device Queue (Use Case)

When a response plan item is removed from a traffic event's response plan, the item removes its message from the queue of the device specified in the item. This causes the queue to evaluate the remaining messages on the queue (if any) and either set the device to the next highest priority message or blank the device.

3.1.4.13 Respond To Traffic Events (Use Case)

A user with proper functional rights can create a response plan associated with a traffic event. This response plan defines DMS and HAR devices to be used to help manage the traffic event along with the message to be placed on each device. After setting up or changing entries in a response plan, the user can execute the plan. The user can also execute individual items in the plan. When a user no longer wishes to use a specific device in the response to the traffic event, the user may remove the item from the response plan. When the user closes the traffic event, all items used in the traffic event response plan are automatically removed. The inclusion of a device in a response plan is a request by the user for the device to display the message. The message is only displayed if there are no traffic events of higher priority that have also requested that a message be displayed on the device.

3.1.4.14 Revoke Response Items (Use Case)

A user with the proper functional rights can remove a device from the response plan of a traffic event. The system will also automatically perform this operation when a traffic event is closed. When a response plan item is removed from the response plan, the message specified in the item is removed from the specified device's arbitration queue.

3.1.4.15 View Device Queue (Use Case)

An operator with proper functional rights can view the messages that are queued for a device. The user shall be able to see the actual message to be set or a description of the message (in the case of a voice message) and the current priority of each message.

3.1.4.16 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

Class Diagram

[image: image17.emf]ResponsePlanItemData

1

1

CommandStatus

1

1

ArbitrationQueue

ArbQueueCmdStatus

CommandStatus

ArbQueueEntry

TrafficEvent

ResponsePlanItem

Message

ArbitrationQueueEnabled

«interface»

11

*

1

*

1

*1

1

1

11

1

1

1

1

execute(responsePlanItem, trafficEvent)

revokeExecution()

eventTypeChanged()

eventTransferred()

getResponseDeviceID()

-m_responseDeviceID

update(String status):void

completed(String final_status)

hasCompleted()

String m_current

String m_desc

addEntry(token, ResponsePlanItem, TrafficEvent, MessageContent)

addEntry(token, TrafficEvent, MessageContent)

removeEntry(token, TrafficEvent)

eventTransferred(token, TrafficEvent)

interrupt()

resume()

requestSucceeded()

requestFailed()

getArbQueueEntries(token):ArbQueueEntry[]

addQueueStatusListener(CommandStatus)

removeQueueStatusListener(CommandStatus)

-evaluateQueue()

addQueueStatusListener(CommandStatus)

removeQueueStatusListener(CommandStatus)

update(String status):void

completed(String final_status)

hasCompleted()

String m_current

String m_desc

addLogEntry()

addResponseParticipation(type, name)

addResponseItem()

associateEvent()

changeType(typeCode)

close()

executeResponse()

getAssociatedEvents()

getClosureTime()

getHistory(maxCount)

getHistory(filter, maxCount)

getResponseParticipations()

hasSceneBeenCleared()

hasDelayCleared()

isClosed()

isPrimary()

removeResponseParticipation()

removeResponseDevice()

setPrimary()

setSecondary()

takeOffline()

setItemData()

getItemData()

execute(trafficEvent)

remove()

getResponseDevice()

hasBeenExecuted()

setActive()

setInactive()

getDescription()

setDescription()

eventTypeChanged(trafficEvent)

eventTransferred(trafficEvent)

validateMessageContent

remove

persist

getArbitrationQueue():ArbitrationQueue

Figure 17. DeviceQueueManagementClassDiagram (Class Diagram)

3.1.4.17 ArbitrationQueue (Class)

An arbitration queue arbitrates the usage of a device by maintaining a prioritized message queue for the associated device. As messages are requested to be displayed or broadcast on a specific device, they are assigned priorities based on predefined message priority parameters and are added to the queue. Each message in the queue is related to a traffic event and a traffic event can have only one message in the queue at a time. Messages are removed from the queue when the related traffic event is closed or when the traffic event deactivates them. If the queue is empty, the device is blanked or a default message is broadcast depending upon the type of the device.

Each time the queue is changed, the queue is re-evaluated. Based on priorities, if the result of the evaluation is different than what is currently displayed or broadcast on the device, the message(s) for display or broadcast are marked as pending and it is sent to the device. Any lesser priority messages remain in the queue for display or broadcast when the higher priority message(s) are deactivated.

The arbitration queue can be interrupted to keep it from performing its automated processing. This mode is used to allow maintenance on the device being arbitrated by the queue without having the queue's automatic processing interfere with the maintenance activities. When an interrupted arbitration queue is taken out of its interrupted state through the use of the resume method, the arbitration queue evaluates the messages in the queue and restores the device to the proper state.

3.1.4.18 ArbitrationQueueEnabled (Class)

This interfaced must be implemented by any device object whose control can be arbitrated using an arbitration queue.

3.1.4.19 ArbQueueCmdStatus (Class)

The class implements the CommandStatus interface and is used to notify listeners of the arbitration queue status. Any call to the update method of this class is processed by prepending text that describes the current arbitration queue activity to the text passed in the update method. This newly constructed status text is then passed to each of the registered listener's command status objects.

This single object that collects other command status objects is used to pass a single command status to device objects such as DMS and HAR and allow them to update a single command status and yet have the status passed to one or more users that are currently watching the activity of the arbitration queue. This method of showing detailed device activities keeps the system from littering the event channels with detailed, little used data.

3.1.4.20 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single traffic event / response plan item. The class holds the associated message, traffic event, and response plan item.

3.1.4.21 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.4.22 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.4.23 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A ResponsePlanItem can be executed by an operator, at which time it becomes the responsibility of the System to activate the item on the ResponseDevice as soon as it is appropriate.

3.1.4.24 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.4.25 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan item. Derived classes of this base class have specific implementations for the type of device the response plan item is used to control.

Sequence Diagrams

3.1.4.26 AddMessageToDeviceQueue:Basic (Sequence Diagram)

The operator sets the message to be displayed or broadcast on a device when responding to a traffic event. The operator selects one (or more) devices to use in response to the traffic event and the system creates ResponsePlanItems that each specify a device, the message to be played on the device. The operator executes a response plan item which causes the desired message to be set on the device. This is accomplished by adding a prioritized entry to the arbitration queue of the device with the message. The arbitration evaluates its queue and sets the message on the device if this entry has priority over any other entries already in the queue. See EvaluateDeviceQueueEntries sequence diagrams for more details.

[image: image18.emf][improper functional rights]

AccessDenied

[controlling op center is

different and no override]

ResourceControlConflict

addLogEntry

ArbitrationQueueResponsePlanItem

Operator

ResponPlanItemData

evaluateQueue

[success]

command queued

execute

[no rights]

AccessDenied

TrafficEvent

addEntry

execute

Message

validateMessageContent

[if message has banned words]

DiapprovedMessageContent

[if message has banned words]

DiapprovedMessageContent

[if message has banned words]

DiapprovedMessageContent

Figure 18. AddMessageToDeviceQueue:Basic (Sequence Diagram)

3.1.4.27 ArbQueueCmdStatus:update (Sequence Diagram)

The ArbQueueCmdStatus object is a command status object that the arbitration queue uses to collect command status objects from GUIs whose user wishes to watch the activity of the arbitration queue. The arbitration queue passes its single command status object to devices when it is commanding them due to queue activities and it passes on status updates made by the device. This provides a means to monitor device commands that are performed automatically by the arbitration queue.

[image: image19.emf]ArbitrationQueue

or

DMS

or

HAR

ArbQueueCmdStatusCommandStatus

update ("status text")

[*for each status listener]

"prepend descriptive

text to status text"

update

[failure]

"remove from

listener list"

Figure 19. ArbQueueCmdStatus:update (Sequence Diagram)

3.1.4.28 EvaluateDMSDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)

The arbitration queue re-evaluates its queue whenever the queue is modified or when the device is set online. If the queue is empty and the last active entry was removed, it requests the DMS to blank itself. See ControlDMS:BlankDMS for details about how the blank DMS command is processed. If the request was successful, the ResponsePlanItem used to set the previous message is notified. This creates a log entry in the traffic event from which the previous message was set to indicate that the traffic event's usage of the DMS has ended.

[image: image20.emf]Response plan item

that revoked the last

entry from the queue,

causing this evaluation.

Traffic event serving the

response plan item that

revoked the entry

[blanked]

requestSucceeded

[queue has become empty]

blankSignFromQueue

[queue has become empty]

update ("Queue is empty, blanking sign")

addLogEntry("device blanked")

evaluateQueue

[blank failed]

requestFailed

addLogEntry("device blank failed")

setInactive

ArbQueueCmdStatus

The DMS processes

commands asynchronously.

It supplies updates via the

command status as it performs

the blank command.

update

DMS processes the blank

command and reports the

status asynchronously

Chart2DMSDMSArbitrationQueueResponsePlanItem

ArbitrationQueue

TrafficEvent

Figure 20. EvaluateDMSDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)

3.1.4.29 EvaluateDMSDeviceQueueEntries:QueueModified (Sequence Diagram)

The arbitration queue re-evaluates its queue whenever the queue is modified or when the device is set online. If an entry was added to the queue or if an entry was removed and there are more entries in the queue, the arbitration queue retrieves the next available entry with the highest priority. If the device allows message concatenation, the top two single page messages are concatenated. The rules that govern this concatenation feature are TBD. The message is set on the DMS and the updates are pushed to the response plan item(s). See DMSControl:SetDMSMessage for details. If the setting of the DMS message causes a previously set DMS message to be no longer displayed, the ResponsePlanItem(s) used to set the previous message is notified. This creates a log entry in the traffic event from which the previous message was set to indicate that the traffic event's usage of the DMS has ended.

[image: image21.emf]"Perform

message

concatenation"

DMSArbitrationQueueResponsePlanItem

ArbitrationQueue

TrafficEvent

Response plan item

that added the entry.

Traffic event that is

serving theresponse

plan item that added

the entry

DMS processes the

set message

command and reports the

status asynchronously

ResponsePlanItemTrafficEvent

Response plan item

whose message was

overridden

Traffic event serving

the old response plan

item

update("setting message")

[device online]

setMessageFromQueue

evaluateQueue

[set message failed]

requestFailed

update("set message failed")

addLogEntry("set message failed")

[set message]

requestSucceeded

setActive

addLogEntry("set message")

update("set message")

[success AND different event

had control previously]

addLogEntry("message overridden")

ArbQueueCmdStatus

[interrupted]

Chart2DMS

[success AND different event

had control previously]

setInactive

Figure 21. EvaluateDMSDeviceQueueEntries:QueueModified (Sequence Diagram)

3.1.4.30 EvaluateHARDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)

The arbitration queue re-evaluates its queue whenever the queue is modified or when the device is set online. If the queue is empty and the last active entry was removed, it notifies the HAR to blank itself. See ControlHAR:BlankHAR for details about how the blank HAR command is processed. If the request was successful, the ResponsePlanItem used to set the previous message is notified. This creates a log entry in the traffic event from which the previous message was set to indicate that the traffic event's usage of the HAR has ended.

[image: image22.emf]Traffic event serving the

response plan item that

revoked the entry

ArbQueueCmdStatus

The HAR processes

commands asynchronously.

It supplies updates via the

command status as it performs

the blank command.

[queue has become empty]

update ("Queue is empty, blanking sign")

update

setInactive

addLogEntry("device blanked")

HAR processes the blank

command and reports the

status asynchronously

[blanked]

requestSucceeded

Chart2HARHARArbitrationQueueResponsePlanItem

ArbitrationQueue

[if queue is empty and the last

active entry was removed]

blankFromQueue

evaluateQueue

TrafficEvent

Response plan item

that revoked the last

entry from the queue,

causing this evaluation.

[blank failed]

requestFailed

addLogEntry("device blank failed")

Figure 22. EvaluateHARDeviceQueueEntries:QueueIsEmpty (Sequence Diagram)

3.1.4.31 EvaluateHARDeviceQueueEntries:QueueModified (Sequence Diagram)

The arbitration queue re-evaluates its queue whenever the queue is modified or when the device is set online. If an entry was added to the queue or if an entry was removed and there are more entries in the queue, the arbitration queue retrieves the next available entry with the highest priority. If the device allows message concatenation, the high priority messages are concatenated. The rules that govern this concatenation feature are TBD. The concatenated message is set on the HAR and the updates are pushed to the response plan item(s). See HARControl:SetHARMessage for details. If the setting of the HAR message causes a previously set HAR message to be no longer played, the ResponsePlanItem(s) used to set the previous message is notified. This creates a log entry in the traffic event from which the previous message was set to indicate that the traffic event's usage of the HAR has ended.

[image: image23.emf]"Perform

message

concatenation"

Chart2HARHARArbitrationQueueResponsePlanItem

ArbitrationQueue

update("setting message")

[device online]

setMessageFromQueue

evaluateQueue

TrafficEvent

Response plan item

that added the entry.

Traffic event that is

serving theresponse

plan item that added

the entry

HAR processes the

set message

command and reports the

status asynchronously

ResponsePlanItemTrafficEvent

Response plan item

whose message was

overridden

Traffic event serving

the old response plan

item

[set message failed]

requestFailed

update("set message failed")

addLogEntry("set message failed")

[set message]

requestSucceeded

setActive

addLogEntry("set message")

update("set message")

[success AND different event

had control previously]

addLogEntry("message overridden")

[success AND different event

had control previously]

setInactive

ArbQueueCmdStatus

[interrupted]

Figure 23. EvaluateHARDeviceQueueEntries:QueueModified (Sequence Diagram)

3.1.4.32 InterruptArbitrationQueue:Basic (Sequence Diagram)

Placing a device in maintenance or offline modes interrupts the arbitration queue. This sequence diagram shows the processing of the interrupt sequence in the arbitration queue. If a message was active on the device, the response plan item that put the message is informed that it is inactive and a log entry is added to the traffic event serving the response plan item.

[image: image24.emf]DMS or HAR

ArbitrationQueueResponsePlanItemTrafficEventArbQueueCmdStatus

interrupt

[if response plan item was using HAR]

setInactive

[if traffic event was using HAR]

addLogEntry("Queue interrupted")

Update and

Persist

update

Figure 24. InterruptArbitrationQueue:Basic (Sequence Diagram)

3.1.4.33 PrioritizeDeviceQueue:Basic (Sequence Diagram)

A user with proper functional rights can change the priority of arbitration queue entries. The user sets the priority for the entries whose priority needs to be changed and requests the arbitration queue to update its list. Arbitration queue updates its list and updates its queue status to inform any listeners about the changes.

[image: image25.emf][improper functional rights]

AccessDenied

See ViewDeviceQueue

sequence diagram for

details.

success

ArbitrationQueueGUI

Operator

"View Device Queue"

ArbQueueCmdStatus

ArbQueueEntry list

prioritizeQueue

"Re-arrange the

queue according to

the user set priorities"

update

evaluateQueue

The user rearranges the

arb queue entry items

graphically on the GUI

Figure 25. PrioritizeDeviceQueue:Basic (Sequence Diagram)

3.1.4.34 RemoveMessageFromDeviceQueue:Basic (Sequence Diagram)

A device is blanked when an operator closes the traffic event from which the currently active device message was set or the operator removes the response plan item from the traffic event. In either case, the ResponsePlanItem tells the device's arbitration queue to remove the message and the arbitration queue evaluates its queue. See EvaluateDeviceQueueEntries sequence diagrams for more details about how the queue is evaluated and the command is processed.

[image: image26.emf][improper functional rights]

AccessDenied]

[controlling op center is

different and no override]

ResourceControlConflict

ResponsePlanItemResponsePlanItemDataArbitrationQueue

Operator

[has been executed]

revokeExecution

remove

evaluateQueue

command queued

removeEntry

[improper functional rights]

AccessDenied

TrafficEvent

addLogEntry

Figure 26. RemoveMessageFromDeviceQueue:Basic (Sequence Diagram)

3.1.4.35 ResumeArbitrationQueue:Basic (Sequence Diagram)

This diagram shows the processing that occurs when the arbitration queue is told to resume its processing. The queue is re-evaluated, the arbitration queue state is update and persisted. See EvaluateDeviceQueueEntries sequence diagrams for details.

[image: image27.emf]Update and

Persist

See EvaluateDeviceQueueEntries

sequence diagram for details.

ArbQueueCmdStatus

update

DMS or HAR

ArbitrationQueue

resume

evaluateQueue

Figure 27. ResumeArbitrationQueue:Basic (Sequence Diagram)

3.1.4.36 ViewDeviceQueue:Basic (Sequence Diagram)

A user with proper functional rights can view the list of prioritized entries that are queued for execution in the arbitration queue of a device at any time.

[image: image28.emf]getArbitrationQueue

getArbQueueEntries

ArbQueueEntry list

This command status is registered

as a listener to the queue status and

will be updated when there are any

changes in the queue.

CommandStatus

[improper functional rights]

AccessDenied

[improper functional rights]

AccessDenied

Operator

ArbitrationQueueEnabledArbitrationQueue

GUI finds all the devices that

implement ArbitrationQueueable

at startup.

CosTrading.Lookup

addQueueStatusListener

This is either a DMS

or HAR

delete

create

"Display Command Status"

"Close Device Queue Window"

removeQueueStatusListener

GUI

query("ArbitrationQueueEnabled")

Device list

ArbitrationQueue

"View Device Queue"

"Display list"

Figure 28. ViewDeviceQueue:Basic (Sequence Diagram)

HAR Control

3.1.5 Use Case Diagram

The system allows users to control Highway Advisory Radio (HAR) devices deployed throughout the state to broadcast traffic alerts to motorists. The system also allows roadside signs, known as SHAZAMs to be activated to notify travelers to tune their radio to a specified station to hear the traffic alert that is being broadcast.

[image: image29.emf]«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«extends»

«uses»

Uses setup HAR

If HAR was previously

offline.

Record audio

HAR Message

Format HAR

Message

only when

HAR was

previously

offline

Deactivate

SHAZAM

Take SHAZAM Offline

Operator

Listen To HAR

 Message

Put SHAZAM Online

View HAR

Slot Usage

Delete HAR

Message

From Controller

Store HAR

Message In

Controller

Manage HAR

Message Slots

Setup HAR

Reset HAR

Turn On HAR

Transmitter

Turn Off HAR

Transmitter

Put HAR in

Maintenance Mode

Update HAR

Message DateTime

System

Reset SHAZAM

to Last Known

State

Blank HAR

Take HAR Offline

Put HAR Online

UseDMSAsSHAZAM

Put SHAZAM in

 Maintenance Mode

Check For

Banned Words

Set HAR

Message

Activate

SHAZAM

Evaluate

HAR Device

Queue Entries

Only allowed

when HAR in

Maint Mode

Only allowed

when HAR in

maint mode

Figure 29. ControlHAR (Use Case Diagram)

3.1.5.1 Activate SHAZAM (Use Case)

A SHAZAM is activated through a HAR message activation that includes the SHAZAM. When a SHAZAM device is activated, its beacons are enabled. In the case of a DMS acting as a SHAZAM, a previously configured message (similar to a message that would be displayed on a SHAZAM with a fixed sign) is displayed.

A SHAZAM can only be activated if the SHAZAM is associated to a HAR and the HAR is currently playing a message (other than the default message).

If a SHAZAM is allowed to be activated when it is already in use by an event response plan (same op center usage or override functional right), a message is logged in the original event's history indicating that the SHAZAM is no longer in use by the event.

3.1.5.2 Deactivate SHAZAM (Use Case)

A SHAZAM can be deactivated by a user closing an event that was using the SHAZAM in its response plan or indirectly through operations such as taking a SHAZAM or HAR offline. Deactivating a SHAZAM stops its beacons from flashing and in the case of a DMS acting as a SHAZAM, blanks the "tune radio" message. When a SHAZAM is deactivated and it was being used in an event's response plan, a message is logged in the event's history indicating the SHAZAM was deactivated.

3.1.5.3 Evaluate HAR Device Queue Entries (Use Case)

The system shall evaluate entries placed on a HAR's arbitration queue in response to traffic events. The system shall use a priority algorithm (TBD) to determine which message shall be placed on the HAR device. The system shall evaluate entries when a new entry is added, when an entry is removed, and when notified by the HAR device object that a previous asynchronous request has completed. When the queue is evaluated, the highest priority message shall be set on the HAR device, unless it is already currently set on the HAR device. When an evaluation occurs and the queue has become empty, the queue shall set the HAR device to its default message. The queue shall allow the concatenation of multiple messages to be set on the HAR device as the recording space on the HAR allows and according to configuration settings and concatenation rules. The rules that govern this feature are TBD.

3.1.5.4 Check For Banned Words (Use Case)

An operator (or the system) validates a text message by checking the words against the list of banned words for a particular device type. The check for banned words will be case insensitive.

3.1.5.5 Format HAR Message (Use Case)

An operator may use the HAR message editor to create a HAR message. The editor will allow the operator to enter header, body and trailer text for the message. The text will be validated for banned and approved words. The editor will also allow the operator to view the run-time of the spoken message in minutes and seconds. If the run-time is greater than two minutes the system will alert the user by displaying the run-time in red text. The editor will allow an operator to insert delays between message segments. Text messages created by the user will be converted to an audio format by the system.

Message text shall allow inclusion of an optional date/time field that can be automatically updated by the system. This field can be included in-line in the text and may be used more than once in the message. The date/time field shall specify the format of this field (when included). Valid formats shall include general time of day (morning 00:00 - 11:59, afternoon 12:00 - 16:59, evening 17:00 - 23:59) and others (TBD). The system shall replace the date time fields with text based on the current time of day and the specified format.

3.1.5.6 Listen To HAR Message (Use Case)

The user can listen to the current message being broadcast by a HAR device. The user can listen to the header, body, and/or trailer.

3.1.5.7 Put HAR in Maintenance Mode (Use Case)

A user with proper functional rights may place a HAR in maintenance mode. When placed in maintenance mode, if the HAR was previously offline, the setup command is used to reload the HAR's slots that are configured for use in CHART II. If the HAR was previously online, the HAR's message is set to its default message. The HAR shall proceed to maintenance mode even if attempts to control the device during this process fail. When a HAR is placed in maintenance mode, the controlling op center of the HAR becomes the op center of the user that performed the operation.

3.1.5.8 Delete HAR Message From Controller (Use Case)

A user may delete a message from a slot in the HAR controller when the HAR is in maintenance mode.

3.1.5.9 Manage HAR Message Slots (Use Case)

A user with appropriate privileges can manage the messages stored in a HAR controller. The controller supports a number of slots that can be pre-loaded with voice clips for later broadcast. Refer to the extended use cases for details on management activities that can be performed. Slot 2 in the HAR controller shall be reserved for the default HAR message. Slot 7 in the HAR controller shall be reserved for messages downloaded for immediate broadcast. Slots 1 and 3 in the HAR controller shall be reserved for the default header and trailer messages, respectively.

3.1.5.10 Put SHAZAM in Maintenance Mode (Use Case)

A user with proper functional rights can place a SHAZAM in maintenance mode. When the SHAZAM is placed in maintenance mode, an attempt is made to deactivate the SHAZAM. Even if this attempt fails, the SHAZAM proceeds to maintenance mode and the controlling operations center of the SHAZAM is set to the operations center of the user that performed the operation.

3.1.5.11 Put SHAZAM Online (Use Case)

A user with appropriate privileges can put a SHAZAM online if the SHAZAM is currently offline. Putting the SHAZAM online makes it available for control through the system.

3.1.5.12 Record audio HAR Message (Use Case)

A user with appropriate privileges can record an audio message as an alternative to entering a text message. The operator's voice will be recorded in a binary audio file format using configurable system wide audio settings. The audio format and default settings have not yet been determined. These system wide voice recording audio setting values shall match those used in the text to speech conversion. Manually recorded audio will require the user to enter a description of the message to be used in status displays.

3.1.5.13 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.5.14 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by an administrator when the device is in maintenance mode. The message activation may specify messages which were previously stored in message slots in the controller or a message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use the default header and trailer or just use the message body for the entire message. Messages activated in this manner shall be loaded into the HAR controller in the slot designated for immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated or not.

3.1.5.15 Store HAR Message In Controller (Use Case)

A user can format a HAR message and store it in a slot in the HAR controller for later broadcast. Slots reserved by the system (1, 2, 3, and 7) cannot be used, however any other slot in the HAR controller can be specified, even if the slot is currently used for a different message. The HAR must be in maintenance mode to download a message other than immediate messages.

3.1.5.16 Reset HAR (Use Case)

A user with proper privileges can reset a HAR that is in maintenance mode. Resetting a HAR clears the HAR's memory and restores it to its factory settings. All messages previously stored in the HAR controller are lost from the controller. The system automatically issues the setup command after the HAR is reset to restore the settings and to restore the messages that were previously stored in the controller.

3.1.5.17 Setup HAR (Use Case)

An administrator can issue the setup command on a HAR that is in maintenance mode. The setup command causes the CHART II system to load its configuration values for the HAR into the device. The setup command also causes all messages that are currently specified to be stored in the HAR controller to be restored into the device.

3.1.5.18 Turn On HAR Transmitter (Use Case)

A user with appropriate privileges can turn on the transmitter of a HAR that is in maintenance mode.

3.1.5.19 Turn Off HAR Transmitter (Use Case)

A user with appropriate privileges can turn off the transmitter of a HAR that is in maintenance mode.

3.1.5.20 Update HAR Message DateTime (Use Case)

The system shall periodically update HAR messages that are currently active and contain a date/time field. The date/time field shall be updated based on the current time of day and the format specified in the date/time field.

3.1.5.21 View HAR Slot Usage (Use Case)

A user may view the current HAR controller slot usage. This shall include all slots in use, the message that is stored in the slot, and the total time used by all messages stored in the controller, the total time supported by the controller, and the percentage of controller memory that is in use.

3.1.5.22 Blank HAR (Use Case)

A HAR can be blanked if it is online or in maintenance mode. When the HAR is online, the device is only blanked if there are no traffic events that have currently requested that a message be placed on the device. When the HAR is in maintenance mode, the HAR can be blanked directly by the user.

A HAR can be blanked indirectly through administrative functions such as placing the device online or resetting the device.

When a HAR is blanked, the system will set the HAR's default message to be the current message. Additionally, the system will deactivate any associated active SHAZAMs before blanking the HAR itself.

3.1.5.23 Reset SHAZAM to Last Known State (Use Case)

The system will periodically connect to each SHAZAM and issue a command to put the SHAZAM in the state as indicated by the system as the last known state. This is a safe guard put in place because the state of the SHAZAM cannot be polled.

3.1.5.24 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.5.25 Take SHAZAM Offline (Use Case)

A user with appropriate privileges can take a SHAZAM offline. A SHAZAM that has been taken offline is not able to be controlled through the system (activated or deactivated) until the SHAZAM is put online. Taking a SHAZAM off line does not affect any HAR that has been associated with the SHAZAM.

3.1.5.26 Put HAR Online (Use Case)

A user with appropriate privileges can put a HAR device online if it has previously been taken offline or put in maintenance mode. This automatically turns on the HAR transmitter and makes the HAR available for control through the system. When a HAR is placed online, the user shall be given the option to put any associated SHAZAMs online as well.

3.1.5.27 Take HAR Offline (Use Case)

A user with appropriate privileges can take a HAR offline to disallow control of the HAR through the system. When a HAR is taken offline, the HAR's transmitter is turned off and all associated SHAZAM devices are also taken offline.

3.1.5.28 UseDMSAsSHAZAM (Use Case)

A user with appropriate privileges may opt to control DMS as a SHAZAM for a HAR. In such a case, a pre-configured message is set on the DMS that informs the traveler about the HAR message being broadcast, with the DMS beacons flashing.

 Class Diagrams

3.1.5.29 HAR Control Class Diagram

[image: image30.emf]HARArbitrationQueue

1

1

ArbitrationQueue

CommEnabled

«interface»

Chart2HAR

11

*1

*1

*

0..1

1

passes

commands through

command queue as

*

performs

commands

using

*

1

11

1

*

1

*

*

0..1

HARRPIData

BlankHARCmdResetHARCmd

QueuableCommand

UniquelyIdentifiable

«interface»

StoredMessage

CommandStatus

HARMessageNotifier

«interface»

ISS AP55 HAR

GeoLocatable

«interface»

HARStoredMsgItem

HAR

«interface»

HARFactory

PlanItem

SharedResourceManager

«interface»

ArbitrationQueueEnabled

«interface»

CommandQueue

SharedResource

«interface»

provides

async

cmd status

using

1

*

getCommandDescription()

execute()

getToken()

interrupted()

getID

getName

setMessage

getMessage

remove

setCategory

getCategory

setMessageDescription

getMessageDescription

setLastModifiedBy

getLastModifiedBy

getMessageData

setMessageData

persist

update(String status):void

completed(String final_status)

hasCompleted()

String m_current

String m_desc

activateHARNotice(token, trafficEvent)

deactivateHARNotice(token, trafficEvent)

isHARNoticeActive

setAssociatedHAR

getAssociatedHAR

getDirection

setDirection

String getLocationDesc()

getHARID

getMessageID

setHAR

setMessage

setConfigData

setDirection

getDirection

setMessage()

getMessage()

blank()

storeMessage()

deleteMessage()

getSlotUsage()

getSlotMessage()

activateMessage()

isMessageActive()

createPlanItem()

reset()

updateDateTimeField()

setTransmitterOff()

setTransmitterOn()

setConfiguration

getConfiguration

getStatus

remove

addSHAZAM

removeSHAZAM

setup

createHAR

setName

remove

isUsingObject

createResponsePlanItem

setResponseMessage(rspPlanItem)

getResources

getControlledResources(OpCenter)

hasControlledResources(OpCenter)

getControllingOpCenter

getControllingOpCenterName

getOwnerOrgID

addEntry(token, ResponsePlanItem, TrafficEvent, MessageContent)

addEntry(token, TrafficEvent, MessageContent)

removeEntry(token, TrafficEvent)

eventTransferred(token, TrafficEvent)

interrupt()

resume()

requestSucceeded()

requestFailed()

getArbQueueEntries(token):ArbQueueEntry[]

addQueueStatusListener(CommandStatus)

removeQueueStatusListener(CommandStatus)

-evaluateQueue()

takeOffline

putOnline

putInMaintenanceMode

getCommMode

addMsgNotifier

removeMsgNotifier

createPlanItem

updateDateTimeField

setMessage(TrafficEvent, MessageData)

getMonitoredAudio(int numSecs)

-activateMsgNotifiers

-deactivateMsgNotifiers

-setControllingOpCenter

addCommand(QueuableCommand)

getHAR()

setHAR()

setMessageContent()

getMessageContent()

getArbitrationQueue():ArbitrationQueue

Figure 30. HARControlClassDiagram (Class Diagram)

3.1.5.29.1 ArbitrationQueue (Class)

An arbitration queue arbitrates the usage of a device by maintaining a prioritized message queue for the associated device. As messages are requested to be displayed or broadcast on a specific device, they are assigned priorities based on predefined message priority parameters and are added to the queue. Each message in the queue is related to a traffic event and a traffic event can have only one message in the queue at a time. Messages are removed from the queue when the related traffic event is closed or when the traffic event deactivates them. If the queue is empty, the device is blanked or a default message is broadcast depending upon the type of the device.

Each time the queue is changed, the queue is re-evaluated. Based on priorities, if the result of the evaluation is different than what is currently displayed or broadcast on the device, the message(s) for display or broadcast are marked as pending and it is sent to the device. Any lesser priority messages remain in the queue for display or broadcast when the higher priority message(s) are deactivated.

The arbitration queue can be interrupted to keep it from performing its automated processing. This mode is used to allow maintenance on the device being arbitrated by the queue without having the queue's automatic processing interfere with the maintenance activities. When an interrupted arbitration queue is taken out of its interrupted state through the use of the resume method, the arbitration queue evaluates the messages in the queue and restores the device to the proper state.

3.1.5.29.2 ArbitrationQueueEnabled (Class)

This interfaced must be implemented by any device object whose control can be arbitrated using an arbitration queue.

3.1.5.29.3 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart II business rules, such as arbitration queues, linking device usage to traffic events, and the concept of a shared resource.

3.1.5.29.4 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.5.29.5 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This typically only applies to field devices.

3.1.5.29.6 BlankHARCmd (Class)

This class implements the QueueableCommand interface. When it is executed it will put the HAR into a blank state (playing the default message).

3.1.5.29.7 HARArbitrationQueue (Class)

This class extends the ArbitrationQueue to implement the rules that govern the arbitration of control of a HAR.

3.1.5.29.8 HARMessageNotifier (Class)

This interface is implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.

3.1.5.29.9 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR when executed. When the item is executed, it adds the message to the arbitration queue of the specified HAR. When the item is removed from the response plan (manually or implicitly through closing the traffic event) the item asks the HAR's arbitration queue to remove the message.

3.1.5.29.10 ISS AP55 HAR (Class)

This class contains the model specific implementation of HAR features supported by the Information System Specialists (ISS) AP55 HAR controller. This class stores no data related to the current state of the device. Instead, this class is used to encapsulate the device protocol and acts as a utility class to enable an application level class to control the AP55 without communications knowledge.

3.1.5.29.11 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract class is subclassed for specific actions that can be planned in the system.

3.1.5.29.12 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.5.29.13 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface will be expanded in future releases to include the information necessary for placing objects on a system map.

3.1.5.29.14 HARStoredMsgItem (Class)

This class provides a means for associating a HAR message with a HAR for use in responding to a traffic event. A directional indicator is stored to specify the SHAZAMs to activate (by default) when the message is activated on the specified HAR.

3.1.5.29.15 ResetHARCmd (Class)

This class is a derivation of the QueueableCommand that causes the HAR to be reset. When this command is successful, it leaves the device in a blank state (playing the default message).

3.1.5.29.16 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related information over a localized radio transmitter, making the information available to the traveler.

3.1.5.29.17 HARFactory (Class)

This class allows new HAR objects to be added to the system. It also periodically causes any HAR playing a text message that has a date/time field to refresh its message.

3.1.5.29.18 QueuableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a queue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed.

3.1.5.29.19 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.5.29.20 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.1.5.29.21 StoredMessage (Class)

This class represents a stored message in a library. It contains a message object and adds library storage attributes such as category and message description.

3.1.5.29.22 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.5.30 SHAZAMControlClassDiagram (Class Diagram)

[image: image31.emf]CommandQueue

11

TrafficEvent

SHAZAMFactory

GeoLocatable

«interface»

SHAZAM

CommEnabled

«interface»

HARMessageNotifier

«interface»

SharedResource

«interface»

SharedResourceManager

«interface»

UniquelyIdentifiable

«interface»CommandStatus

VikingRc2aSHAZAM

*1

*1

*

1

provides asynchronous

command status using

1

is in use by

1

0..1*

addCommand(QueuableCommand)

createSHAZAM

String getLocationDesc()

refresh()

setConfiguration

getConfiguration

remove

getStatus

takeOffline

putOnline

putInMaintenanceMode

getCommMode

activateHARNotice(token, trafficEvent)

deactivateHARNotice(token, trafficEvent)

isHARNoticeActive

setAssociatedHAR

getAssociatedHAR

getDirection

setDirection

getControllingOpCenter

getControllingOpCenterName

getOwnerOrgID

getResources

getControlledResources(OpCenter)

hasControlledResources(OpCenter)

getID

getName

update(String status):void

completed(String final_status)

hasCompleted()

String m_current

String m_desc

VikingRc2aSHAZAM(telephonyManager, phoneNumber)

activate(priority)

deactivate(priority)

Figure 31. SHAZAMControlClassDiagram (Class Diagram)

3.1.5.30.1 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.5.30.2 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.5.30.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This typically only applies to field devices.

3.1.5.30.4 HARMessageNotifier (Class)

This interface is implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.

3.1.5.30.5 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.5.30.6 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.1.5.30.7 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface will be expanded in future releases to include the information necessary for placing objects on a system map.

3.1.5.30.8 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to perform the model specific protocol for device command and control.

3.1.5.30.9 SHAZAMFactory (Class)

This class allows new SHAZAM objects to be added to the system. This class also provides a periodic timer used to allow SHAZAMs to perform any timer based processing that is needed, such as refreshing their status (active or inactive) with the actual field device.

3.1.5.30.10 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.1.5.30.11 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.5.30.12 VikingRc2aSHAZAM (Class)

This class provides the device specific prototcol for controlling a SHAZAM device.

Sequence Diagrams

3.1.5.31 ActivateSHAZAM:Basic (Sequence Diagram)

Activation of a SHAZAM is done by a HAR as part of setting the current message to be played on the HAR. When a HAR is told to play a message, it is given a list of SHAZAMs to be activated (this includes DMSs acting as SHAZAMs). This diagram shows the behavior of the SHAZAM when it is activated by a HAR. The SHAZAM makes an entry in the traffic event passed to indicate that the SHAZAM is in use by the traffic event.

[image: image32.emf][offline or maint mode and no maint mode rights]

CHART2Exception

[improper functional rights]

AccessDenied

activateHARNotice

update

activate

activateHARNotificationImpl

addCommand

TrafficEvent

Shazams are only controlled

through other system operations.

The user cannot directly control

SHAZAMs.

SHAZAMCosEvent.PushConsumerCommandQueue

CommandQueue

processes commands

in async thread.

Refer to FMS sequence

diagram for details including

possible exceptions.

System

VikingRc2aSHAZAMCommandStatus

[offline or maint mode

and no maint mode

rights]

completed

[improper functional

rights]

completed

[success]

push (SHAZAM activated)

[controlling op center

not equal and no override]

ResourceControlConflict

[controlling op center

not equal and no override]

completed

addLogEntry

[success]

push (Controlling Op Center Changed)

[success]

update and persist state

completed

command queued

Figure 32. ActivateSHAZAM:Basic (Sequence Diagram)

ActivateSHAZAM:HARActivatingMsgNotifiers (Sequence Diagram)

This diagram shows processing the HAR uses when it is activating HAR message notifiers, which are SHAZAMs or DMSs acting as SHAZAMs. In addition to activating the message notifiers that are specified to be activated, the HAR also deactivates notifiers that were previously active and are no longer specified to be active. The HARMessageNotifiers process asynchronously and the HAR monitors their completion status until all have completed.

[image: image33.emf]HARMessageNotifier

HAR

CommandStatus

CommandStatus

[*while not all complete]

[*for each notifier]

[Notifier is not specified to be active and is currently active]

deactivateHARNotice

update

update

update

isCompleted

[Notifier is specified to be active and is not already active]

activateHARNotice

create

Figure 33. ActivateSHAZAM:HARActivatingMsgNotifiers (Sequence Diagram)

3.1.5.32 BlankHAR:Basic (Sequence Diagram)

The arbitration queue blanks a HAR if the last entry in the queue is removed. When the HAR is blanked, it also deactivates any SHAZAMS (or DMSs acting as SHAZAMs) that are currently active. The default message is set as the message to be broadcast when the HAR is blanked.

[image: image34.emf]releasePort

command queued

CommandStatusCosEvent.PushConsumerArbitrationQueue

ArbitrationQueue

ISSAP55HARCommandQueue

BlankDMSCmd

Commad Queue

processes the commands

asynchronously.

update (blanking sign)

deactivateMessageNotifiers

"update and persist state"

create

addCommand

execute

blankFromQueueImpl

update (Shazams deactivated)

[success]

push (Controlling op center changed)

[success]

push (HAR Message Changed)

setMessage(default)

blankFromQueue

[failure]

requestFailed

[success]

requestSucceeded

Chart2HAR PortLocator

getConnectedPort

VoicePort

Figure 34. BlankHAR:Basic (Sequence Diagram)

3.1.5.33 BlankHAR:HARinMaintenanceMode (Sequence Diagram)

When a HAR is in maintenance mode a user with maintenance mode privileges can blank the HAR. Blanking the HAR has the effect of causing the default message for the HAR to be broadcast.

[image: image35.emf]releasePort

[success]

push(HAR message changed)

[success]

update and persist state

setMessage (default msg)

update

blank

blankImpl

execute

command queued

addCommand

update

create

[improper functional rights]

completed

[improper functional rights]

AccessDenied

[device not in maint mode]

completed

[device not in maint mode]

Chart2Exception

create

completed

delete

[op center not equal

and no override]

ResourceControlConflict

[op center not equal and no override]

completed

CommandStatus

User calls the blank in the HAR

interface which does not require a

traffic event.

delete

deactivateMessageNotifiers

[if controlling op center changed and success]

push(HAR controlling op center changed)

HAR

Administrator

CommandQueue

processes commands

asynchronously.

CosEvent.PushSupplier

BlankHARMsgCmd

CommandQueuePortLocator

VoicePort

getConnectedPort

ISSAP55HAR

Figure 35. BlankHAR:HARinMaintenanceMode (Sequence Diagram)

3.1.5.34 DeactivateSHAZAM:Basic (Sequence Diagram)

A SHAZAM is deactivated by a HAR when the HAR message that specified the use of the SHAZAM is blanked. The SHAZAM logs its deactivation in the log of the traffic event that was using the SHAZAM.

[image: image36.emf]releasePort

DeactivateSHAZAMCmd

create

delete

deactivate

[op center not equal

and no override]

completed

addLogEntry

command queued

[offline or maint mode and no maint mode rights]

CHART2Exception

[offline or maint mode

and no maint mode

rights]

completed

[improper functional

rights]

completed

[success]

push (SHAZAM deactivated)

[success]

push (Controlling Op Center Changed)

[success]

update and persist state

completed

deactivateHARNotice

TrafficEventVikingRc2aSHAZAMCommandStatusSHAZAM

System usually uses

the HARMessageNotifier

interface and is not aware this

is a SHAZAM vs. a DMS.

CosEvent.PushConsumerCommandQueue

CommandQueue

processes commands

in async thread.

System

Shazams are only controlled

through other system operations.

The user cannot directly control

SHAZAMs.

[op center not equal

and no override]

ResourceControlConflict

update

deactivateHARNotificationImpl

addCommand

[improper functional rights]

AccessDenied

PortLocator

getConnectedPort

VoicePort

Figure 36. DeactivateSHAZAM:Basic (Sequence Diagram)

3.1.5.35 DeactivateSHAZAM:HARDeactivatingMsgNotifiers (Sequence Diagram)

This diagram shows the processing done by the HAR when it needs to deactivate all of its associated message notifiers that are currently activated. The HARMessageNotifiers perform asynchronously so the HAR monitors the command status objects to provide an ongoing completion status and to know when the notifiers have all completed their operations.

[image: image37.emf]deactivateHARNotice

create

[*while not all deactivations

complete]

CommandStatus

CommandStatus

HARMessageNotifier

HAR

[*for each notifier that is

currently activated]

[completed]

delete

update

update

update

isCompleted

Figure 37. DeactivateSHAZAM:HARDeactivatingMsgNotifiers (Sequence Diagram)

3.1.5.36 DeleteHARMessageFromController:Basic (Sequence Diagram)

An operator with the correct functional rights may erase a message that is stored in a slot of a HAR device when the device is in maintenance mode. An event is pushed via the CORBA Event Service to inform others of the message deletion.

[image: image38.emf][not maint mode]

completed

[improper functional rights]

AccessDenied

[improper functional rights]

completed

[success]

update and persist

state

deleteMessageImpl

[op center not equal caller's op center and no override]

completed

completed

deleteMessage

execute

create

deleteMessage

command queued

[success]

push (HAR Slot Message deleted)

CommandStatus

Command Queue

processes commands

asynchronously.

Operator

ISSAP55HAR

update

update

create

CommandQueue

DeleteMessageCmd

Chart2HARCosEvent.PushConsumer

[not maint mode]

CHART2Exception

command queued

[op center not equal caller's

op center and no override]

ResourceControlConflict

addCommand

releasePort

PortLocator

getConnectedPort

VoicePort

Figure 38. DeleteHARMessageFromController:Basic (Sequence Diagram)

3.1.5.37 PutHARinMaintenanceMode:Basic (Sequence Diagram)

An administrator may put a HAR in maintenance mode. When this occurs, the HAR's arbitration queue is interrupted and the current message (if any) on the HAR is blanked. When the device is in maintenance mode, only operators with maintenance mode privileges can control the HAR. Direct operations on the HAR (those other than set message or blank via traffic event) require the HAR to be in maintenance mode.

If the HAR is unable to blank its message when being put in maintenance mode (due to HW failure, comm failure, etc.) then the HAR still goes into maintenance mode and sets the controlling op center equal to the op center that is placing the device in maintenance mode.

[image: image39.emf]push (Dev in Maint mode)

[blanked]

push (HAR Message Changed)

update

[op center not equal caller's op center and no override]

completed

create

putInMaintModeImpl

command queued

command queued

create

[op center not equal caller's

op center and no override]

ResourceControlConflict

[has message]

blank

[message notifier is a SHAZAM]

putInMaintenanceMode

isCompleted

create

completed

push (Controlling Op center changed)

[if device online]

interrupt

[improper functional rights]

completed

[improper functional rights]

AccessDenied

[already in maintenance mode]

CHART2Exception

[already in maintenance mode]

completed

[*while not all

HARMessage

Notifiers completed]

putInMaintenanceMode

[success]

update and persist

state

HARMessageNotifier

CommandStatus

Chart2HAR

Administrator

CosEvent.PushConsumer

When a HAR is put in

maintenance mode and

it is in use by a traffic event

and it is unable to blank the current

message, the op center placing the

device in maintenance mode becomes

the controlling op center for the device.

CommandStatus

Command Queue

processes this

operation

asynchronously.

HARArbitrationQueue

PutHARInMaintModeCmd

ISSAP55HARCommandQueue

[if device offline]

setConfiguration

addCommand

[*for each

message notifier]

execute

PortLocator

getConnectedPort

VoicePort

Figure 39. PutHARinMaintenanceMode:Basic (Sequence Diagram)

3.1.5.38 PutHAROnline:Basic (Sequence Diagram)

An administrator can put a HAR online if that HAR is currently offline or in maintenance mode. When this occurs, the administrator is asked to select which SHAZAM devices should be put online. Each selected SHAZAM device will then be put online. The HAR is blanked when it is brought online to put it into a known state.

[image: image40.emf]SHAZAMChart2HARCosEvent.PushConsumer

PutHAROnlineCmd

[if not offline]

push (Controlling op center changed)

putOnlineImpl

completed

"update and

persist state"

[if not offline]

push (HARTransmitterOn)

[if not offline]

setTransmitterOn

command queued

putOnline

[if not offline]

setMessage(default message)

addCommand

[if not offline]

push (HAR Message changed)

[controlling op center not equal caller's and no override]

completed

execute

[controlling op center not equal

caller's and no override]

ResourceControlConflict

create

[already online]

CHART2Exception

[already online]

completed

[improper functional rights]

completed

[improper functional rights]

AccessDenied

See SetupHAR sequence

diagram for details.

ArbitrationQueue

resume

[if offline]

setup

CommandStatus

SHAZAMs process

asynchronously.

See ControlHAR:PutSHAZAMOnline

sequence diagram for details.

The user is asked to select

which SHAZAMs should

be put online at this point.

GUI

Operator

ISSAP55HAR

CommandStatus

CommandQueue

processes commands

in async thread.

CommandQueue

create

putOnline

"Selected SHAZAMs"

create

[*for each

selected

SHAZAM]

"Get User Input"

getConfiguration

putOnline

PortLocator

getConnectedPort

VoicePort

releasePort

Figure 40. PutHAROnline:Basic (Sequence Diagram)

3.1.5.39 PutSHAZAMinMaintenanceMode:Basic (Sequence Diagram)

A user with the proper functional rights may put a SHAZAM in maintenance mode. When in maintenance mode the SHAZAM can only be used by users that have the right to operate a device while in maintenance mode.

[image: image41.emf][success]

push (SHAZAM deactivated)

push (Controlling Op Center Changed)

[success]

update and persist state

completed

update

[improper functional rights]

AccessDenied

putInMaintenanceMode

deactivate

putInMaintModeImpl

create

execute

addCommand

create

[in use by traffic event]

addLogEntry

[op center not equal

and no override]

ResourceControlConflict

[op center not equal

and no override]

completed

PortLocator

releasePort

getConnectedPort

VoicePort

Administrator

VikingRc2aSHAZAM

If the SHAZAM is currently in use by a

traffic event and it cannot be deactivated,

it still goes into maintenance mode but

changes its controlling op center to the

op center putting the device in maintenance

mode.

CommandQueue

CommandQueue

processes commands

in async thread.

TrafficEvent

CommandStatus

SHAZAMCosEvent.PushConsumer

PutSHAZAMInMaintMode

push (SHAZAM in maint mode)

command queued

[already in maint mode]]

CHART2Exception

[already in maint mode]

completed

[improper functional

rights]

completed

Figure 41. PutSHAZAMinMaintenanceMode:Basic (Sequence Diagram)

3.1.5.40 PutSHAZAMOnline:Basic (Sequence Diagram)

An administrator can put a SHAZAM online if the SHAZAM is offline or in maintenance mode. The SHAZAM is put online automatically when the HAR that is associated with the SHAZAM is put online. When the SHAZAM is put online it is deactivated to ensure it is in a known state.

[image: image42.emf]execute

completed

update

SHAZAMCosEvent.PushConsumerCommandQueue

CommandQueue

processes commands

in async thread.

PortLocator

releasePort

getConnectedPort

VoicePort

delete

PutSHAZAMOnlineCmd

create

Administrator

VikingRc2aSHAZAM

CommandStatus

create

[success]

push (SHAZAM online)

[improper functional rights]

AccessDenied

putOnline

deactivate

putOnlineImpl

addCommand

[op center not equal an no override]

ResourceControlConflict

[op center not equal and

no override]

completed

delete

command queued

[online or maint mode and no online rights]

CHART2Exception

[online or maint mode

and no online rights]

completed

[improper functional

rights]

completed

[success]

push (SHAZAM deactivated)

[success]

push (Controlling Op Center Changed)

[success]

update and persist state

Figure 42. PutSHAZAMOnline:Basic (Sequence Diagram)

3.1.5.41 ResetHAR:Basic (Sequence Diagram)

A user that has the proper functional rights can reset a HAR that is in maintenance mode. Because resetting the HAR hardware erases all the configuration and message details, a setup is performed immediately after a reset to restore the state of the HAR.

[image: image43.emf]execute

create

[improper functional

rights]

AccessDenied

[improper functional rights]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

delete

delete

deactivateMsgNotifiers

command queued

command queued

[op center not equal caller's

op center and no override]

ResourceControlConflict

addCommand

[op center not equal caller's op center and no override]

completed

reset

[success]

push (HAR message changed)

update

update

create

[success]

update and persist

state

setTransmitterOn

setMessage("Default message slot")

CommandStatus

CommandQueue

ResetCmd

Chart2HARCosEvent.PushConsumer

Command Queue

processes commands

asynchronously.

Administrator

ISSAP55HAR

setConfiguration

[success]

push(Controlling op center changed)

storeMessage

[*for each message

set to be stored

in a controller slot]

resetImpl

completed

reset

PortLocator

releasePort

getConnectedPort

VoicePort

Figure 43. ResetHAR:Basic (Sequence Diagram)

3.1.5.42 ResetSHAZAMtoLastKnownState:Basic (Sequence Diagram)

The system periodically commands SHAZAMs to activate or deactivate based on the current state of the SHAZAM in the system. This is done as a safety measure because the physical device does not acknowledge commands and cannot be queried to ensure a command has been performed. Each SHAZAM object has a configuration value that specifies how often such a reset is to be performed. Timer based processing such as this is carried out by the SHAZAM factory. The factory periodically notifies each SHAZAM object to check if there is any timer based processing to be done. When notified, if the SHAZAM is online the SHAZAM checks its refresh rate, the time it was last reset, and the current time and decides if it is time to do a reset. When time to reset, the device is contacted and commanded to its last known state.

[image: image44.emf][refresh was needed and !faiure]

"update last refresh time"

[refresh needed AND state != activated]

deactivate

timerUpdate

[refresh needed AND state == activated]

activate

CosEvent.PushConsumerVikingRc2aSHAZAMSHAZAMSHAZAMFactory

CommandQueue

executes commands

in async thread.

CommandQueue

Factory periodically

notifies each SHAZAM

to check to see if any timer

based processing is

required.

[not online]

"Check if refresh is still needed"

refreshImpl

[refresh needed and command queue empty]

addCommand

[current time minus time of last refresh

greater than refresh interval]

refresh needed

[*for each SHAZAM]

[comm failure]

push (Status)

getConnectedPort

VoicePort

PortLocator

releasePort

Figure 44. ResetSHAZAMtoLastKnownState:Basic (Sequence Diagram)

3.1.5.43 SetHARMessage:Basic (Sequence Diagram)

The arbitration queue executes an entry by setting the specified message on the HAR. This sequence diagram shows the major processing that must occur when a message is set on a HAR when it is in online mode. The message is downloaded to the predefined slot for dynamic messages and is set as the message to be broadcast. The arbitration queue is informed of the command status after completion.

[image: image45.emf]command queued

CosEvent.PushConsumerChart2HARArbitrationQueueCommandQueue

ArbitrationQueue

ISSAP55HAR

Command queue

processes the commands

asynchronously.

CommandQueue

SetHARMessageCmd

setMessageFromQueueImpl

update

setMessageFromQueue

[success]

update and persist

state

[success]

push (Controlling op center changed)

[success]

push (HAR message changed)

update

setMessage(immediate slot)

[success]

activateMessageNotifiers

update

[failure]

requestFailed

create

addCommand

execute

storeMessage (Immediate slot)

[success]

requestSucceeded

PortLocator

getConnectedPort

VoicePort

releasePort

Figure 45. SetHARMessage:Basic (Sequence Diagram)

3.1.5.44 SetHARMessage:HARInMaintenanceMode (Sequence Diagram)

When a HAR is in maintenance mode a user with maintenance mode privileges can set a message on the HAR without first creating a traffic event.

[image: image46.emf]CommandQueue

processes commands

asynchronously.

CosEvent.PushSupplier

SetHARMsgCmd

CommandQueue

CommandStatus

User calls the setMessage in the HAR

interface which does not require a

traffic event.

HAR

Administrator

ISSAP55HAR

storeMessage (immediate slot)

setMessage

[success]

push(HAR message changed)

[success]

update and persist state

delete

[success]

activateMsgNotifiers

[success]

push(HAR controlling op center changed)

setMessage (immediate slot)

update

delete

setMessageImpl

execute

addCommand

update

create

[improper functional rights]

completed

[improper functional rights]

AccessDenied

[device not in maint mode]

completed

[device not in maint mode]

Chart2Exception

create

completed

command queued

PortLocator

getConnectedPort

VoicePort

releasePort

command queued

[controlling op center not

equal and no override]

ResourceControlConflict

[controlling op center

not equal and no

override]

completed

Figure 46. SetHARMessage:HARInMaintenanceMode (Sequence Diagram)

3.1.5.45 SetupHAR:Basic (Sequence Diagram)

An operator with the proper functional rights can issue the setup command to the HAR when the HAR is in maintenance mode. Setting up the HAR causes configuration values to be set on the HAR controller and causes the message slots on the HAR to be restored with the messages as set previously through the system. Lastly the default message is set to be played and the HAR transmitter is turned on.

[image: image47.emf][op center not equal caller's op center and no override]

completed

storeMessage

[*for each msg

to be stored in controller]

ISSAP55HAR

CommandStatus

CommandQueue

SetupCmd

Chart2HARCosEvent.PushConsumer

Command Queue

processes commands

asynchronously.

Administrator

[improper functional

rights]

AccessDenied

[improper functional rights]

completed

[not in maint mode]

CHART2Exception

[not in maint mode]

completed

setupImpl

command queued

command queued

[op center not equal caller's op

center and no override]

ResourceControlConflict

addCommand

setConfiguration

[success and if op center changed]

push (controlling op center changed)

update

update

[success]

push (HAR msg changed)

delete

delete

create

[success]

update and persist

state

completed

setup

execute

create

[success]

push(HAR Transmitter On)

setTransmitterOn

setMessage("Default Message Slot")

deactivateMsgNotifiers

PortLocator

getConnectedPort

VoicePort

releasePort

Figure 47. SetupHAR:Basic (Sequence Diagram)

3.1.5.46 StoreHARMessageInController:Basic (Sequence Diagram)

An operator with the correct functional rights may store a message in a slot of a HAR device when the HAR is in maintenance mode. Storing a message in the HAR controller makes the message available for future activation without incurring the download overhead. An event is pushed via the CORBA Event Service to inform others of the new message.

[image: image48.emf][improper functional rights]

AccessDenied

[improper functional rights]

completed

[success]

push (HAR Slot Message changed)

update

update

create

[success]

update and persist

state

storeMessageImpl

command queued

[op center not equal caller's op center and no override]

completed

command queued

[op center not equal caller's

op center and no override]

ResourceControlConflict

addCommand

completed

storeMessage

execute

create

PortLocator

getConnectedPort

VoicePort

releasePort

Dictionary

Operator

ISSAP55HAR

CommandStatus

CommandQueue

StoreMessageCmd

Chart2HARCosEvent.PushConsumer

Command Queue

processes commands

asynchronously.

[banned words]

DisapprovedMessageContent

[banned words]

completed

[message is in text format]

checkForBannedWords

storeMessage

delete

delete

[message in text format and

contains date time field]

"replace date time field based on TOD"

[not maint mode]

CHART2Exception

[not maint mode]

completed

Figure 48. StoreHARMessageInController:Basic (Sequence Diagram)

3.1.5.47 TakeHAROffline:Basic (Sequence Diagram)

An administrator can take a HAR offline if the HAR is not already offline. When the HAR is taken offline its arbitration queue is interrupted, all of the HARs associated SHAZAMs are also taken offline, and the HAR is set to its default message. If any errors occur, preventing the HAR from being set to its default message, the HAR is still moved to its offline state.

Placing a HAR offline blocks any further commands to the HAR except for placing the HAR online or in maintenance mode.

[image: image49.emf]Administrator

CosEvent.PushConsumer

[op center not equal caller's

op center and no override]

ResourceControlConflict

command queued

command queued

[completed]

delete

delete

execute

create

[has message]

blank

[already offline]

CHART2Exception

[already offline]

completed

[success]

update and persist

state

push (Dev offline)

[blanked]

push (HAR Message Changed)

ISSAP55HARArbitrationQueue

[if device online]

interrupt

addCommand

PortLocator

TakeHAROfflineCmd

HARMessageNotifier

update

[if in maint mode and op center not equal caller's op center]

completed

create

takeOfflineImpl

completed

push (Controlling Op center changed)

[improper functional rights]

completed

[improper functional rights]

AccessDenied

takeOffline

[message notifier is a SHAZAM]

takeOffline

isCompleted

create

[*while not all

HARMessage

Notifiers completed]

[*for each

message notifier]

CommandStatus

CommandStatus

Command Queue

executes commands

asynchronously.

CommandQueue

When a HAR is taken offline

and it is unable to blank the

current message, it still moves

to the offline state.

Chart2HAR

Figure 49. TakeHAROffline:Basic (Sequence Diagram)

3.1.5.48 TakeSHAZAMOffline:Basic (Sequence Diagram)

An administrator can take a SHAZAM offline if the SHAZAM is online or in maintenance mode. If the SHAZAM is in use by a traffic event when it is taken offline, the SHAZAM is deactivated and an entry is made in the traffic event to indicate that the device is no longer in use by the event. This offline state will prevent the SHAZAM from being used during HAR message activation and will also prevent the automatic refresh of the SHAZAM.

[image: image50.emf][maint mode and no rights]

completed

[maint mode and no maint mode rights]

Chart2Exception

CommandQueue

processes commands

in async thread.

Administrator

VikingRc2aSHAZAM

[success]

update and persist state

completed

update

PortLocator

releasePort

getConnectedPort

VoicePort

delete

TakeShazamOfflineCmd

create

takeOfflineImpl

[improper functional rights]

AccessDenied

takeOffline

deactivate

execute

addCommand

delete

create

[in use by traffic event]

addLogEntry

[if in maint mode, op center not equal

and no override]

Chart2Exception

[op center not equal

and no override]

completed

[success]

push (SHAZAM offline)

command queued

[offline]

CHART2Exception

[offline]

completed

[improper functional

rights]

completed

[success]

push (SHAZAM deactivated)

[success]

push (Controlling Op Center Changed)

TrafficEvent

CommandStatus

SHAZAMCosEvent.PushConsumerCommandQueue

Figure 50. TakeSHAZAMOffline:Basic (Sequence Diagram)

3.1.5.49 TurnOffHARTransmitter:Basic (Sequence Diagram)

An operator with proper functional rights can turn off the transmitter of a HAR when the HAR is in maintenance mode. In addition to turning off the transmitter, any message notifiers associated with the HAR are deactivated.

[image: image51.emf]ISSAP55HAR

CommandStatus

delete

delete

deactivateMsgNotifiers

[not maint mode]

completed

setTransmitterOff

[success]

push (HAR Transmitter Off)

update

update

create

[success]

update and persist

state

setTransmitterOffImpl

PortLocator

getConnectedPort

VoicePort

releasePort

command queued

command queued

[op center not equal caller's

op center and no override]

ResourceControlConflict

addCommand

completed

[improper functional rights]

completed

[improper functional

rights]

AccessDenied

[op center not equal caller's op center and no override]

completed

setTransmitterOff

[not maint mode]

Chart2Exception

execute

create

SetTransmitterOffCmd

Chart2HARCosEvent.PushConsumer

Command Queue

processes commands

asynchronously.

CommandQueue

Administrator

Figure 51. TurnOffHARTransmitter:Basic (Sequence Diagram)

3.1.5.50 TurnOnHARTransmitter:Basic (Sequence Diagram)

A user with proper functional rights may turn the transmitter of a HAR on when the HAR is in maintenance mode and the transmitter is currently off.

[image: image52.emf]PortLocator

getConnectedPort

VoicePort

releasePort

CommandQueue

SetTransmitterOnCmd

Chart2HARCosEvent.PushConsumer

Command Queue

processes commands

asynchronously.

Administrator

ISSAP55HAR

CommandStatus

delete

delete

setTransmitterOn

[op center not equal caller's op center and no override]

completed

setTransmitterOn

[success]

push (HAR Transmitter On)

update

update

create

[success]

update and persist

state

setTransmitterOnImpl

command queued

command queued

[op center not equal caller's

 op center and no override]

ResourceControlConflict

addCommand

completed

execute

create

[improper functional

rights]

AccessDenied

[improper functional rights]

completed

[not maint mode]

CHART2Exception

[not maint mode]

completed

Figure 52. TurnOnHARTransmitter:Basic (Sequence Diagram)

3.1.5.51 UpdateHARMessageDateTime:Basic (Sequence Diagram)

The system allows text messages for HARs to contain date time fields that act as place holders for the current period of the day (morning, afternoon, evening). The system periodically replaces the text based on the current time of day and resends the text message to the device when necessary. This processing only applies to online HARs.

[image: image53.emf]PortLocator

getConnectedPort

VoicePort

releasePort

[current time minus time of last refresh

greater thanrefresh interval]

refresh needed

CommandQueue

Factory periodically

notifies each HAR

to check to see if any timer

based processing is

required.

CosEvent.PushConsumerISSAP55HARChart2HARHARFactoryTrafficEvent

CommandQueue

executes commands

in async thread.

RefreshDateTimeCmd

ResponsePlanItem

[comm failure]

push (Status)

addLogEntry

addLogEntry

delete

[not online]

update

execute

[refresh needed]

create

[*for each HAR]

[refresh was attempted]

"update last refresh time"

[success]

push (HARMessageChanged)

[refresh needed]

"replace the date time field

in the message text"

[current message text does

not contain date time field]

[current message is

not text based]

[refresh needed]

setMessage

timerUpdate

"Check if refresh is still needed"

refreshImpl

[refresh needed]

addCommand

Figure 53. UpdateHARMessageDateTime:Basic (Sequence Diagram)

3.1.5.52 UseDMSAsSHAZAM:ActivateSHAZAMMessage (Sequence Diagram)

When a user with the proper functional rights activates a HAR, the HAR activates the specified message notifiers. A DMS may be specified as a HAR message notifier, in which case it will be used as a SHAZAM device. This involves adding a HAR notification message to the DMS's Arbitration queue. While the HAR notification message remains on the arbitration queue, the message will be set on the DMS when there are no higher priority messages in the arbitration queue.

[image: image54.emf]completed

Once a command is queued

the Arbitration queue evaluates

all queue entries and may put the

HAR notification on the DMS if there

is no message with greater priority

on the queue.

A HAR notification message has

the least priority.

command queued

command queued

addHARNotification

update

[offline or maint. mode]

CHART2Exception

[offline or maint. mode]

completed

[improper functional rights]

AccessDenied

[improper functional rights]

completed

activateHARNotice

CommandStatusDMSArbitrationQueueChart2DMS

HAR

Figure 54. UseDMSAsSHAZAM:ActivateSHAZAMMessage (Sequence Diagram)

3.1.5.53 UseDMSAsSHAZAM:DeactivateSHAZAMMessage (Sequence Diagram)

When a user with the proper functional rights deactivates a HAR, any associated DMSs acting as SHAZAMs for the HAR are requested to deactivate their HAR notification. When this occurs, the DMS removes the previously added HAR notification message from its arbitration queue. When an entry is removed from the arbitration queue, the arbitration queue re-evaluates its current entries to determine if the message on the DMS needs to be changed or blanked. If the current message on the DMS is no longer the highest priority message in the queue, the message is changed. If the arbitration queue is empty, the DMS is blanked.

[image: image55.emf]The HAR Notification entry is removed

from the queue and the queue

then re-evaluates the remaining

entries. If no entries remain,

it calls the DMS to blank it.

CommandStatusDMSArbitrationQueueChart2DMS

HAR

deactivateHARNotice

removeHARNotification

update

[offline or maint. mode]

CHART2Exception

[offline or maint. mode]

completed

[improper functional rights]

AccessDenied

[improper functional rights]

completed

completed

Figure 55. UseDMSAsSHAZAM:DeactivateSHAZAMMessage (Sequence Diagram)

3.1.5.54 ViewHARSlotUsage:Basic (Sequence Diagram)

A user may view the messages that are currently stored in the HAR controller. A message description is shown to the user. The user may also view the full message text (for a text message) or listen to the message (text or voice messages).

[image: image56.emf]Operator may optionally

want to listen to the message

that is in a particular slot.

"get message details from DB

"get message text or voice from DB"

getSlotMessage

[improper rights]

AccessDenied

"check functional rights"

message details for

all HAR slots in use.

getSlotUsage

"format message details"

* for each slot that

is being used

[success]

message text or voice

[DB Failure]

CHART2Exception

HAR

Operator

After message is retrieved

from server, operator can

listen to the message through

GUI controls. See

ListenToHARMessage for

details.

Figure 56. ViewHARSlotUsage:Basic (Sequence Diagram)

DMS Control

3.1.6 Use Case Diagram

The system facilitates controlling Dynamic Message Signs (DMS) located throughout the state. These signs allow for customized traffic messages to be displayed to the motoring public. DMSs are located at fixed positions throughout the state and are also deployed on mobile trailers that can be transported to locations where they are needed, including scenes of traffic incidents.

[image: image57.emf]«uses»

«uses»

«uses»

«uses»

This diagram shows only

uses changed for R1B3

Set DMS Message

FMS

Subsystem

Check For Banned

Words

Administrator

Blank DMS

Put DMS Online

Evaluate DMS

Device Queue

Entries

System

Administrator can

perform these when

dms is in maint mode.

Figure 57. R1B3ControlDMS (Use Case Diagram)

3.1.6.1 Blank DMS (Use Case)

A DMS can be blanked when the DMS is online or in maintenance mode. When the DMS is online, it is only blanked by the device's arbitration queue when the arbitration queue becomes empty. When the DMS is in maintenance mode, the DMS can be blanked directly by the user if they have the proper functional rights.

A DMS can be blanked indirectly by other commands, such as placing the device online, offline or in maintanence mode or by resetting the device.

When a DMS that has beacons is blanked, its beacons are turned off.

3.1.6.2 Check For Banned Words (Use Case)

An operator (or the system) validates a text message by checking the words against the list of banned words for a particular device type. The check for banned words will be case insensitive.

3.1.6.3 Evaluate DMS Device Queue Entries (Use Case)

The system shall evaluate entries placed on a DMS's arbitration queue in response to traffic events. The system shall use a priority algorithm (TBD) to determine which message shall be placed on the DMS device. The system shall evaluate entries when a new entry is added, when an entry is removed, and when notified by the DMS device object that a previous asynchronous request has completed. When the queue is evaluated, the highest priority message shall be set on the DMS device, unless it is currently already set on the DMS device. When an evaluation occurs and the queue has become empty, the queue shall blank the DMS. The queue shall allow the concatenation of 2 single page messages to be set on the DMS device according to certain rules and configuration settings. The rules that govern this message concatenation feature are TBD.

3.1.6.4 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.6.5 FMS Subsystem (Actor)

This actor represents the portion of the system which carries out the field communications responsibilities.

3.1.6.6 Put DMS Online (Use Case)

A user with appropriate privileges can put a DMS online if that DMS has previously been taken offline or put in maintenance mode. This makes the DMS available for control through the system. When the DMS is brought online, it is automatically blanked. Automatic polling is resumed using the current polling settings for the DMS.

3.1.6.7 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the message of the DMS to be the message that is on the queue that has the highest priority. When the DMS is in maintenance mode, an operator with proper functional rights can set the message on a DMS directly.

3.1.6.8 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

Class Diagram

[image: image58.emf]ArbitrationQueue

Chart2DMS

DMSStatus

DMS

StoredMessage

PlanItem

CommandStatus

DMSStoredMessageItem

SharedResource

«interface»

SharedResourceManager

«interface»

FP9500ConfigurationTS3001Configuration

HARMessageNotifier

«interface»

UniquelyIdentifiable

«interface»

GeoLocatable

«interface»

FP9500StatusTS3001Status

CommEnabled

«interface»

DMSFactory

DMSConfiguration

PutDMSInMaintenanceModeCmd

*

1

1

*

1

1

11

1

*

DMSRPIData

QueuableCommand

DMSArbitrationQueue

ResetDMSCmd

passes

commands through

command queue as

performs

commands

using

ArbitrationQueueEnabled

«interface»

provides

async

cmd status

using*

1

11

CommandQueue

1

1

*1

0..1

*

0..1

*

1*

setName

setMessage

blankSign

isBlank

resetController

pollNow

getStatus

getConfiguration

setConfiguration

remove

performPixelTest

setMessage

getMessage

remove

setCategory

getCategory

setMessageDescription

getMessageDescription

setLastModifiedBy

getLastModifiedBy

getMessageData

setMessageData

persist

setName

remove

isUsingObject

createResponsePlanItem

setResponseMessage(rspPlanItem)

update(String status):void

completed(String final_status)

hasCompleted()

String m_current

String m_desc

getDMSID

getMessageID

setDMS

setMessage

setConfigData

getControllingOpCenter

getControllingOpCenterName

getOwnerOrgID

getResources

getControlledResources(OpCenter)

hasControlledResources(OpCenter)

activateHARNotice(token, trafficEvent)

deactivateHARNotice(token, trafficEvent)

isHARNoticeActive

setAssociatedHAR

getAssociatedHAR

getDirection

setDirection

getID

getName

String getLocationDesc()

takeOffline

putOnline

putInMaintenanceMode

getCommMode

createDMS

addCommand(QueuableCommand)

getDMS()

setDMS()

getMessageContent()

setMessageContent()

getCommandDescription()

execute()

getToken()

interrupted()

signBlankedDueToCommFailure

errorDetected(errorText)

addHARNotification

removeHARNotification

addEntry(token, ResponsePlanItem, TrafficEvent, MessageContent)

addEntry(token, TrafficEvent, MessageContent)

removeEntry(token, TrafficEvent)

eventTransferred(token, TrafficEvent)

interrupt()

resume()

requestSucceeded()

requestFailed()

getArbQueueEntries(token):ArbQueueEntry[]

addQueueStatusListener(CommandStatus)

removeQueueStatusListener(CommandStatus)

-evaluateQueue()

setMessage(token, TrafficEvent, MessageContent)

blank(token, TrafficEvent)

getArbitrationQueue

getSHAZAMMessage

setSHAZAMMessage

createDMSStoredMsgItem

m_controllingOpCenterName

m_messageContent

m_opStatus

m_dmsShortErrorStatus

getArbitrationQueue():ArbitrationQueue

Figure 58. DMSControlClassDiagram (Class Diagram)

3.1.6.9 ArbitrationQueue (Class)

An arbitration queue arbitrates the usage of a device by maintaining a prioritized message queue for the associated device. As messages are requested to be displayed or broadcast on a specific device, they are assigned priorities based on predefined message priority parameters and are added to the queue. Each message in the queue is related to a traffic event and a traffic event can have only one message in the queue at a time. Messages are removed from the queue when the related traffic event is closed or when the traffic event deactivates them. If the queue is empty, the device is blanked or a default message is broadcast depending upon the type of the device.

Each time the queue is changed, the queue is re-evaluated. Based on priorities, if the result of the evaluation is different than what is currently displayed or broadcast on the device, the message(s) for display or broadcast are marked as pending and it is sent to the device. Any lesser priority messages remain in the queue for display or broadcast when the higher priority message(s) are deactivated.

The arbitration queue can be interrupted to keep it from performing its automated processing. This mode is used to allow maintenance on the device being arbitrated by the queue without having the queue's automatic processing interfere with the maintenance activities. When an interrupted arbitration queue is taken out of its interrupted state through the use of the resume method, the arbitration queue evaluates the messages in the queue and restores the device to the proper state.

3.1.6.10 ArbitrationQueueEnabled (Class)

This interfaced must be implemented by any device object whose control can be arbitrated using an arbitration queue.

3.1.6.11 Chart2DMS (Class)

This class represents a CHART II Dynamic Message Sign (DMS). It is derived from the generic DMS and encapsulates the CHART II business process that provides the rules for control and usage of a DMS device.

3.1.6.12 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out order. As each command object is pulled off the queue by the CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended task.

3.1.6.13 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications turned on or off. This typically only applies to field devices.

3.1.6.14 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an asynchronous operation. This is typically used by a GUI when field communications are involved to complete a method call, allowing the GUI to show the user the progress of the operation. The long running operation calls back to the CommandStatus object periodically as the command is executed and makes a final call to the CommandStatus when the operation has completed. The final call to the CommandStatus from the long running operation indicates the success or failure of the command.

3.1.6.15 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for controlling and maintaining the status of the DMS within the system.

3.1.6.16 DMSArbitrationQueue (Class)

This class extends the ArbitrationQueue to implement the rules that govern the arbitration of control of a DMS.

3.1.6.17 DMSRPIData (Class)

This interface is supported by objects that can put a message on a DMS in response to a traffic event.

3.1.6.18 FP9500Configuration (Class)

This class represents the FP9500 DMS model specific configuration information.

3.1.6.19 ResetDMSCmd (Class)

This class implements the QueueableCommand interface and provides implementation to reset a DMS device.

3.1.6.20 TS3001Configuration (Class)

This class represents the TS3001 DMS model specific configuration information.

3.1.6.21 DMSStatus (Class)

This class represents the status information for a DMS. This class is subclassesed to provide model specific status information.

3.1.6.22 DMSStoredMessageItem (Class)

This class provides a means for associating a DMS message with a DMS for use in responding to a traffic event.

3.1.6.23 PutDMSInMaintenanceModeCmd (Class)

This class implements the QueueableCommand interface and provides implementation to put a DMS into maintenance mode. When a DMS is put into maintenance mode, access to the device is limited to users who have the maintenance mode rights.

3.1.6.24 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract class is subclassed for specific actions that can be planned in the system.

3.1.6.25 QueuableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a queue for asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it is executed.

3.1.6.26 DMSConfiguration (Class)

This class represents the standard DMS configuration information that defines the physical and operational properties of a DMS. This class is subclassed to provide for model specific configuration information.

3.1.6.27 DMSFactory (Class)

The DMSFactory provides a means to create new DMS objects to be added to the system.

3.1.6.28 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic reference. This interface will be expanded in future releases to include the information necessary for placing objects on a system map.

3.1.6.29 HARMessageNotifier (Class)

This interface is implemented by devices that can be used to notify the traveler to tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the HAR.

3.1.6.30 FP9500Status (Class)

This class represents the FP9500 DMS model specific status information.

3.1.6.31 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations center responsible for the disposition of the resource while the resource is in use.

3.1.6.32 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others if there are any resources under its management that are controlled by a given operations center.

3.1.6.33 StoredMessage (Class)

This class represents a stored message in a library. It contains a message object and adds library storage attributes such as category and message description.

3.1.6.34 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.6.35 TS3001Status (Class)

This class represents the TS3001 DMS model specific status information.

Sequence Diagrams

3.1.6.36 BlankDMS:Basic (Sequence Diagram)

When a DMS's arbitration queue becomes empty, it requests that the DMS object blank the device. The DMS acquires a port that is connected to the remote device (this service is provided by the PortLocator) and uses a DMSProtocolHdlr to communicate with the device to actually blank the device. The DMS notifies the ArbitrationQueue of the success or failure of this asynchronous request using the requestSucceeded and requestFailed methods. If the DMS is successful in blanking, it updates its state and pushes events on a CORBA event channel to allow GUIs to update their displays relating to this device.

[image: image59.emf]releasePort

[success]

push(controlling op center changed)

[success]

push(DMS Blanked)

[success]

update and

persist state

PortLocator

getConnectedPort

DataPort

blank

update (Blanking sign)

BlankSignFromQueueImpl

CommandQueue

blankSignFromQueue

create

addCommand

command queued

execute

[failure]

requestFailed

[success]

requestSucceeded

blankSignFromQueueImpl

ArbitrationQueue

DMSProtocolHdlr

Command queue

executes commands

asynchronously

Chart2DMS

A DMS is blanked when the

user removes the DMS from a

traffic event's response or

closes the event and there are

no moreentries in the arbitration

queue waiting to be executed.

ArbitrationQueueCosEvent.PushConsumer

Figure 59. BlankDMS:Basic (Sequence Diagram)

3.1.6.37 BlankDMS:InMaintenanceMode (Sequence Diagram)

A user with appropriate privileges can blank a DMS when the DMS is in maintenance mode. The DMS processes this request by adding the blank DMS message command to the command queue. The command queue executes this command asynchronously. When the command executes, the DMS is blanked and a CORBA event is pushed via the CORBA Event Service to notify all interested parties about the new DMS state. In addition, if the DMS' operations center changed as a result of the operation, another CORBA event is pushed to notify interested parties.

[image: image60.emf]PortLocator

getConnectedPort

DataPort

releasePort

CommandQueue

Command queue

executes commands

asynchronously

BlankDMSCmd

CommandStatus

DMSProtocolHdlr

This can occur when

the DMS is displaying a

message in maint. mode

that was set by a

user from different

op center.

CosEventPushConsumer

Operator

Chart2DMS

addCommand

update

[improper functional rights]

AccessDenied

delete

[improper functional rights]

completed

[not in maint. mode]

CHART2Exception

[not in maint. mode]

completed

create

blankMessage

completed

push(DMS blanked)

update and

persist state

update

[controlling op center changed]

push(controlling op center changed)

blank

update

blankImpl

execute

command queued

command queued

[op center not equal caller's

 op center and no override]

completed

[op center not equal caller's op center and no override]

ResourceControlConflict

getControllingOpCenter

create

Figure 60. BlankDMS:InMaintenanceMode (Sequence Diagram)

3.1.6.38 PutDMSOnline:Basic (Sequence Diagram)

A user with the proper functional rights can put a DMS online. The DMS processes this request asynchronously by placing a command on its command queue and using the command status object to asynchronously notify the requester of the command's progress. When the PutOnline command is executed, the DMS object attempts to blank the device. If the device cannot be blanked for any reason, the device does not transition to the online state. If the device is successfully blanked, the DMS notifies its arbitration queue to resume its automated operation which determines which message to place on the DMS based on priority.

[image: image61.emf]Command queue

executes commands

asynchronously

PutDMSOnlineCommand

CommandStatus

DMSProtocolHdlr

[already online]

CHART2Exception

[already online]

completed

create

putOnline

[improper functional rights]

AccessDenied

[improper functional rights]

completed

delete

command queued

resume

update

create

completed

[maint mode]

[op center not equal

caller's and no override]

completed

push (DMS Online)

[maint mode]

[op center not equal caller's and no override]

ResourceControlConflict

ArbitrationQueue

addCommand

[blank failed]

completed

CosEventPushConsumerCommandQueueChart2DMS

Operator

update and persist state

delete

command queued

push (DMS blanked)

update (blanked sign)

blank

update

putOnlineImpl

execute

PortLocator

getConnectedPort

DataPort

releasePort

Figure 61. PutDMSOnline:Basic (Sequence Diagram)

3.1.6.39 SetDMSMessage:Basic (Sequence Diagram)

The message to be set on an online DMS is controlled by its ArbitrationQueue. The ArbitrationQueue determines the message to be set based on the priorities of the messages that have been queued in response to traffic events. When the arbitration queue requests that the DMS set its message, the DMS retrieves a port that is connected to the remote device and uses a protocol handler to carry out the protocol required to actually set the message on the device. The DMS object uses the arbitration queue's requestSucceeded and requestFailed methods to asynchronously notify the arbitration queue of the results of its request. The DMS pushes any state changes out on a CORBA event channel to allow GUIs to update displays that show this DMS.

[image: image62.emf]SetMessageFromQueueCmd

CommandQueue

create

addCommand

command queued

execute

setMessageFromQueueImpl

[failure]

requestFailed

[success]

requestSucceeded

releasePort

[success and controlling op center changed]

push(controlling op center changed)

[success]

push(set Message)

[success]

update and

persist state

setMessage

Chart2DMS

The arbitration queue

decides which message

to be set based on the

priorities of all messages

that have been queued

in response to traffic events

ArbitrationQueueDMSProtocolHdlrCosEvent.PushConsumer

AritrationQueue

PortLocator

getConnectedPort

DataPort

Command queue processes

commands asynchronously

setMessageFromQueue

Figure 62. SetDMSMessage:Basic (Sequence Diagram)

View Device Status

3.1.7 Use Case Diagram

The user may view the status of a device. The information that encompasses a device status depends on the device type and sometimes even the device model within a device type. Device status is viewable in the CHART II GUI in the system navigator.

[image: image63.emf]«uses»

«uses»

View HAR

Status

Listen To HAR

Message

Listen to HAR

Monitor Line

Operator

View SHAZAM

Status

Figure 63. R1B3ViewDeviceStatus (Use Case Diagram)

3.1.7.1 Listen To HAR Message (Use Case)

The user can listen to the current message being broadcast by a HAR device. The user can listen to the header, body, and/or trailer.

3.1.7.2 Listen to HAR Monitor Line (Use Case)

A user may listen to the message being broadcast by a HAR by monitoring the HAR's monitor line. The system shall connect to the device's monitor line and record a configurable number of seconds of the message and play it back to the user. The user shall be able to select one or more HAR devices to have the system perform this function on all selected HAR devices in succession.

3.1.7.3 View HAR Status (Use Case)

The user is able to view the current status of a HAR device. Commonly needed status fields are shown in a system navigator window which shows status for each device in a list format. Less used information is accessed through an Info Window which requires the user to perform a mouse action to view. Following is the information shown for a HAR device. Navigator: Device Name, Device Location (Text), Current Message (or message description for recorded voice), Monitor Phone Number, Controlling Operations Center, Operational Status, Last Time GUI received an update. Info Window: Above Information Plus, Owning Organization, Name of server site where device's software object is served, and a description of the message in each occupied slot on the HAR controller.

3.1.7.4 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.7.5 View SHAZAM Status (Use Case)

The user is able to view the current status of a SHAZAM device. Commonly needed status fields are shown in a system navigator window which shows status for each device in a list format. Less used information is accessed through an Info Window which requires the user to perform a mouse action to view. Following is the information shown for a SHAZAM device. Navigator: Device Name, Device Location (Text), Currently active, Controlling Operations Center, Operational Status, Last Time GUI received an update. Info Window: Above Information Plus, Owning Organization, Name of server site where device's software object is served.

Sequence Diagrams

3.1.7.6 ListenToHARMessage:Basic (Sequence Diagram)

A user can listen to the current message being broadcast by a HAR device. The user can listen to the messages stored in the HAR controller, including the header and trailer. If the message the operator wishes to listen to is a recorded voice message, the message is passed back to the operator (GUI) for playing. If the message is a text message, the operator (GUI) must pass the text to a textToSpeech converter to be able to listen to the spoken message.

[image: image64.emf][*for each

message segment]

The operator can listen

to a HAR message currently

being edited, the

message currently activated

on the HAR, or a message

stored in a HAR slot. This

diagram addresses each of

these options.

Chart2HAR

SpeechEngine

message array

"get slot text or voice

from DB"

[*for each HAR slot

in the active message]

getCurrentMessage

 text or voice

[text]

convertTextToSpeech

Operator

After a complete voice file has

been assembled,

the operator uses the play and

stop buttons on the GUI to listen

to the file.

Operator may choose

to listen to the current

message on the HAR.

If operator is recording message,

operator may listen to the

recorded message at the GUI

using play and stop buttons.

"get slot text or voice

from DB"

getSlotMessage

"Append text or voice to return array"

append to voice file

[text]

convertTextToSpeech

GUI Control is used to play

the wave file or convert the

text to wave and then play.

Operator may choose to listen to

the message stored in a specific

slot in the HAR

Figure 64. ListenToHARMessage:Basic (Sequence Diagram)

3.1.7.7 ListentoHARMonitorLine:Basic (Sequence Diagram)

A user can listen to the current message being broadcast using the monitor line of a HAR device. This monitor line plays the message that is currently being broadcast by the HAR. The system connects to the device's monitor line and records the audio for a configurable time. After it has finished recording, it passes the recorded audio data back to the requesting user's GUI, which plays the audio. A user may perform this command on multiple HAR devices at once, in which case the GUI queues up the voice data and plays it back to the user sequentially.

[image: image65.emf]Operator

Operator chooses to

listen to the message

being broadcast by the

HAR.

The audio data is automatically

played for the user. The user

has controls to stop and restart

the audio. This data may be

streamed to allow the playback

to start sooner (TBD).

ISSAP55HARCommandQueue

QueueableCommand

CommandStatusChart2HAR

If the user has selected

multiple HARs and issued

the monitor command,

the GUI will serialize the

commands and automatically

playback one HAR's message

after another.

getMonitoredAudio

[improper rights]

AccessDenied

create

[offline]

CHART2Exception

update ("command queued")

addCommand

execute

getMonitoredAudioImpl

update

getConnectedPort

VoicePort

record

Audio Data

Audio Data

releasePort

VoicePortPortLocator

Figure 65. ListentoHARMonitorLine:Basic (Sequence Diagram)

3.1.7.8 ViewHARStatus:Basic (Sequence Diagram)

This sequence diagram depicts the fact that the status of a HAR may be obtained on demand, or can be received periodically as the state of the HAR changes. State changes are pushed as events via the CORBA Event Service.

[image: image66.emf]push (status changed)

Operator

HAR

CosEvent.PushConsumer

HAR notifies operator of HAR status

changes by pushing events through

the CORBA event service.

Initial status of a HAR is obtained

by calling the HAR methods at startup.

CosTrading.Lookup

References to all HAR objects

in the system are obtained from

the CORBA trading service.

push (status changed)

"An operation that

changes message"

query

HAR List

getStatus

create

Operator

Figure 66. ViewHARStatus:Basic (Sequence Diagram)

3.1.7.9 ViewSHAZAMStatus:Basic (Sequence Diagram)

The GUI discovers the status of a SHAZAM during startup. The GUI is notified of changes to the status of the SHAZAM via a CORBA event channel. When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the SHAZAM.

[image: image67.emf]CosEvent.PushConsumer

SHAZAM notifies operator of SHAZAM

status changes by pushing events

 throughthe CORBA event service.

Initial status of a SHAZAM

is obtained by calling the

SHAZAM methods at startup.

CosTrading.Lookup

References to all SHAZAM objects

in the system are obtained from

the CORBA trading service.

push(status changed)

"An operation that

changes message"

getStatus

query

SHAZAM list

create

push (status changed)

OperatorOperator

SHAZAM

Figure 67. ViewSHAZAMStatus:Basic (Sequence Diagram)

Device Configuration

3.1.8 Use Case Diagram

This diagram models the actions that a user may take to view the status of system devices.

[image: image68.emf]«uses»

«uses»

«extends»

«extends»

«uses»

Delete SHAZAM

Modify SHAZAM

Settings

Associate Message

Notifier With HAR

Add HAR

Delete HAR

Modify HAR

Settings

Modify DMS Settings

Delete Device

Set HAR

Notifier Message

Administrator

Add SHAZAM

Figure 68. R1B3ConfigureDevices (Use Case Diagram)

3.1.8.1 Add HAR (Use Case)

A user with appropriate privileges may add a HAR to the system. The settings for the HAR must be specified when the HAR is added.

3.1.8.2 Add SHAZAM (Use Case)

A user with appropriate privileges can add a SHAZAM to the system. The settings for the SHAZAM must be specified at the time the SHAZAM is added.

3.1.8.3 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.8.4 Delete Device (Use Case)

A user with appropriate privileges can remove a device from the system. The device must be offline before it can be removed from the system.

3.1.8.5 Delete HAR (Use Case)

A user with the appropriate privileges can remove a HAR from the system. A warning will be shown prior to proceeding with the operation. After a HAR is removed from the system, any plan items that include the HAR will be invalidated and will need to be edited to target a different HAR or be removed from the system.

3.1.8.6 Associate Message Notifier With HAR (Use Case)

Any device used to notify motorists to tune their radio to a particular station to hear a traffic alert being broadcast by a HAR is known as a HAR message notifier. Both SHAZAMs and DMSs can be utilized as HAR message notifiers. A user with appropriate privileges can associate a HAR message notifier with a HAR device. A HAR message notifier can be associated with at most one HAR device. The system shall support the association of at least 8 SHAZAMs and 8 DMSs to a HAR as message notifiers.

3.1.8.7 Delete SHAZAM (Use Case)

A user with appropriate privileges can remove a SHAZAM from the system. A warning will be displayed prior to completing this operation. Once a SHAZAM is removed from the system, any associations made between HARs and the SHAZAM are lost.

3.1.8.8 Modify DMS Settings (Use Case)

A user with appropriate privileges can modify the settings for a DMS.

3.1.8.9 Modify HAR Settings (Use Case)

A user with appropriate privileges may modify the settings for a HAR. The following settings are included: HAR Name, HAR Location, Controller Phone Number, Monitor Phone Number, Default message header, Default message body, Default message trailer, Automatic date/time message update interval.

3.1.8.10 Modify SHAZAM Settings (Use Case)

The following settings for a SHAZAM may be modified: SHAZAM name, SHAZAM location, Phone number, automatic reset interval.

3.1.8.11 Set HAR Notifier Message (Use Case)

A user with appropriate privileges can set the message to be displayed on a DMS when the DMS is activated as a HAR message notifier. This message is one of the settings that may be modified for a DMS.

Sequence Diagrams

3.1.8.12 AddHAR:Basic (Sequence Diagram)

A user with proper functional rights can add a HAR to the system using the HAR Factory. This involves creating a new HAR object, publishing the existence of the HAR in the CORBA trading service, and notifying interested parties of the new HAR via the CORBA event service.

[image: image69.emf]POA

activate_object

create

HAR

HARFactory

CosTrading.Register

CosEvent.PushConsumer

Administrator

CommandQueue

ArbitrationQueue

create

create

[no rights]

AccessDenied

createHAR

Add to Database

export

push

(HAR added)

[unexpected error]

CHART2Exception

create

ISS AP55 HAR

Chart2HAR

Figure 69. AddHAR:Basic (Sequence Diagram)

3.1.8.13 AddSHAZAM:Basic (Sequence Diagram)

A user with proper functional rights can add a SHAZAM to the system using the SHAZAM Factory. This involves creating a new SHAZAM object, publishing the existence of the SHAZAM in the CORBA trading service, and notifying interested parties of the new SHAZAM via the CORBA event service.

[image: image70.emf]POA

activate_object

Viking Rc2a Shazam

SHAZAMFactory

CosTrading.Register

CosEvent.PushConsumer

CommandQueue

SHAZAM

Administrator

export

push

(SHAZAM added)

createSHAZAM

create

[no rights]

AccessDenied

Add to Database

create

[unexpected error]

CHART2Exception

CommandQueue

create

Figure 70. AddSHAZAM:Basic (Sequence Diagram)

3.1.8.14 AssociateMessageNotifierWithHAR:Basic (Sequence Diagram)

A user with the proper functional rights can associate a SHAZAM or DMS to a HAR for the purpose of be used in conjunction with the HAR to notify motorists that the HAR is broadcasting a traffic alert. When the message notifier (SHAZAM or DMS) is added to the HAR, the HAR sets itself as the one and only HAR with which the message notifier is associated with. If the message notifier is already associated with another HAR, this operation fails.

[image: image71.emf]HARMessageNotifier

[success]

setAssociatedHAR

[Message notifier already

has an associated HAR]

CHART2Exception

[success]

[Message notifier already

has an associated HAR]

CHART2Exception

Administrator

HAR

addSHAZAM

Figure 71. AssociateMessageNotifierWithHAR:Basic (Sequence Diagram)

3.1.8.15 DeleteHAR:Basic (Sequence Diagram)

A user with the proper functional rights can remove a HAR from the system. A HAR has to be offline before it can be removed. When a HAR is removed, all message notifiers associated with the HAR are called to remove their association with the HAR.

[image: image72.emf]POA

deactivate_object

Administrator

HARFactoryCosTrading.RegisterISSAP55HARHARMessageNotifierChart2HAR CosEvent.PushConsumer

removeHAR

removeHAR

removeAssociatedHAR

push(SHAZAM association removed)

[*for each Msg Notifier]

update and

persist state

delete

push

(HAR removed)

[Device not offline]

CHART2Exception

If the HAR is currently

is not offline, it either

is in maint. mode or is

online and can be

responding to an

event. In both cases,

the HAR is not allowed

to be removed.

"withdraw HAR offer"

ArbitrationQueueCommandQueue

delete

delete

[no rights]

AccessDenied

Figure 72. DeleteHAR:Basic (Sequence Diagram)

3.1.8.16 DeleteSHAZAM:Basic (Sequence Diagram)

A user with the proper functional rights can delete a SHAZAM from the system. A SHAZAM has to be offline before it can be deleted.

[image: image73.emf]POA

deactivate_object

SHAZAM

Viking Rc2a SHAZAMCosTrading.RegisterCosEvent.PushConsumer

Administrator

SHAZAMFactory

removeSHAZAM

Update Database

remove

delete

[improper functional rights]

AccessDenied

[device not offline]

CHART2Exception

withdraw

update and persist

state

push

(SHAZAM removed)

Figure 73. DeleteSHAZAM:Basic (Sequence Diagram)

3.1.8.17 ModifyHARSettings:Basic (Sequence Diagram)

A user with the proper functional rights can modify the configuration data of a HAR when it is in maintenance mode. If the operation succeeds, an event is pushed via the CORBA event service to notify others of the change.

[image: image74.emf]setConfiguration

command queued

[controlling op center not

equal and no override]

ResourceControlConflict

[controlling op center

not equal and no

override]

completed

[device settings changed]

setConfiguration

[default trailer changed]

storeMessage(trailer slot)

delete

delete

CommandQueueChart2HAR

Administrator

ISSAP55HAR

ArbitrationQueue

processes commands

asynchronously.

CosEvent.PushConsumer

SetHARConfigurationCmd

CommandStatus

[not in maint mode]

completed

[improper functional rights]

AccessDenied

create

[not in maint mode]

Chart2Exception

[default message changed]

storeMessage (default msg slot)

update

[default header changed]

storeMessage (header slot)

[success]

push(HAR configuration changed)

[success]

update and persist state

completed

setConfigurationImpl

execute

addCommand

create

[improper functional rights]

completed

update

command queued

releasePort

PortLocator

getConnectedPort

VoicePort

Figure 74. ModifyHARSettings:Basic (Sequence Diagram)

3.1.8.18 ModifySHAZAMSettings:Basic (Sequence Diagram)

A user with the proper functional rights can modify the configuration data of a SHAZAM when it is in maintenance mode. If the configuration data has been successfully changed an event is pushed via the CORBA Event Service to notify others about the change.

[image: image75.emf]Administrator

CommandQueue

Queue executes

commands

asynchronously

[improper functional rights]

completed

setConfiguration

create

Update Database

"Set Configuration Impl"

setConfiguration

push

(SHAZAM modified)

delete

[not in maint. mode]

CHART2Exception

[not in maint. mode]

completed

[improper functional

rights]

AccessDenied

completed

delete

execute

addCommand

create

[op center not equal to caller's op center and no override]

completed

command queued

[op center not equal to caller's

op center and no override]

ResourceControlConflict

CommandStatus

Viking Rc2a SHAZAMSHAZAM

QueuableCommand

CosEvent.PushConsumer

Figure 75. ModifySHAZAMSettings:Basic (Sequence Diagram)

Stored Message Management

3.1.9 Use Case Diagram

This diagram models the actions that an operator may take in relation to stored messages and message libraries.

[image: image76.emf]«extends»

«extends»

«extends»

«extends»

«uses»

«uses»

«extends»

View Stored

Message

View HAR

Stored Message

Create

Stored

Message

Modify

Stored Message

Edit Message Library

Operator

Format HAR

Message

Record audio

HAR Message

Create HAR

Stored

Message

Modify HAR

Stored

Message

Figure 76. R1B3ManageStoredMessages (Use Case Diagram)

3.1.9.1 Create Stored Message (Use Case)

An operator with the correct functional rights may create a new stored message in an existing message library. Please refer to the extending use cases for details regarding the types of messages that may be stored in a message library.

3.1.9.2 Edit Message Library (Use Case)

An operator with the correct functional rights may modify an existing message library. Please refer to the use cases which extend this use case for details on library modifications supported by the system.

3.1.9.3 Modify Stored Message (Use Case)

An operator with the correct functional rights may modify an existing stored message. Please refer to the extending use cases for details regarding the types of message modifications which are supported.

3.1.9.4 Modify HAR Stored Message (Use Case)

An operator with the correct functional rights may modify an existing HAR stored message. The operator may alter the message name or content.

3.1.9.5 Create HAR Stored Message (Use Case)

An operator may store a HAR message in a library. The message may be in either text or wav format.

3.1.9.6 Format HAR Message (Use Case)

An operator may use the HAR message editor to create a HAR message. The editor will allow the operator to enter header, body and trailer text for the message. The text will be validated for banned and approved words. The editor will also allow the operator to view the run-time of the spoken message in minutes and seconds. If the run-time is greater than two minutes the system will alert the user by displaying the run-time in red text. The editor will allow an operator to insert delays between message segments. Text messages created by the user will be converted to an audio format by the system.

Message text shall allow inclusion of an optional date/time field that can be automatically updated by the system. This field can be included in-line in the text and may be used more than once in the message. The date/time field shall specify the format of this field (when included). Valid formats shall include general time of day (morning 00:00 - 11:59, afternoon 12:00 - 16:59, evening 17:00 - 23:59) and others (TBD). The system shall replace the date time fields with text based on the current time of day and the specified format.

3.1.9.7 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.9.8 Record audio HAR Message (Use Case)

A user with appropriate privileges can record an audio message as an alternative to entering a text message. The operator's voice will be recorded in a binary audio file format using configurable system wide audio settings. The audio format and default settings have not yet been determined. These system wide voice recording audio setting values shall match those used in the text to speech conversion. Manually recorded audio will require the user to enter a description of the message to be used in status displays.

3.1.9.9 View HAR Stored Message (Use Case)

The user shall be able to view the contents of a HAR stored message. The following shall be shown: Message text (in the case of a text message), message description, message category, the name of the last user to modify the message, and the message length in minutes and seconds.

3.1.9.10 View Stored Message (Use Case)

The user can view the contents of a stored message.

Class Diagram

[image: image77.emf]MessageLibraryFactoryMessageLibrary

StoredMessage

UniquelyIdentifiable

«interface»

HARMessage

HARMessageTextClipHARMessageAudioClip

HARMessageClip

DMSMessage

Message

1..31

1*

1

1

*1

getMessageTextgetAudioClip

getMessageContent

setMessageContent

getMinCharacters

validateMessageContent

remove

persist

createLibrary

getLibraryList

createStoredMessage

getStoredMessages

isMessageUsedByAnyPlan

isUsedByAnyPlan

remove

removeMessage

setName

setMessage

getMessage

remove

setCategory

getCategory

setMessageDescription

getMessageDescription

setLastModifiedBy

getLastModifiedBy

getMessageData

setMessageData

persist

getID

getName

setHeader

getHeader

setTrailer

getTrailer

setBody

getBody

useDefaultHeader

userDefaultFooter

Figure 77. MessageLibraryClassDiagram (Class Diagram)

3.1.9.11 DMSMessage (Class)

This class represents a text message which is capable of being displayed on a DMS.

3.1.9.12 HARMessage (Class)

This class represents a HAR message. It consists of header, body and footer of the message which can either be in audio format or plain text.

3.1.9.13 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text which would need to be converted to audio prior to broadcast, or binary format (WAV)

3.1.9.14 HARMessageAudioClip (Class)

This class represents a HAR message content object which is in binary format (WAV). This message cannot be checked for banned words and can be downloaded directly into the HAR device for broadcast.

3.1.9.15 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format. This message can be checked for banned words and will be converted into a voice message using a speech engine to broadcast on a HAR device.

3.1.9.16 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.9.17 MessageLibrary (Class)

This class represents a logical collection of messages which are stored in the database.

3.1.9.18 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.1.9.19 StoredMessage (Class)

This class represents a stored message in a library. It contains a message object and adds library storage attributes such as category and message description.

3.1.9.20 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

Sequence Diagrams

3.1.9.21 CreateHARStoredMessage:Basic (Sequence Diagram)

An operator with the correct functional rights may create a stored message for using it to broadcast on a HAR device. The GUI will create a Message object based on the type of stored message the user would like to create. In this case, a HARMessage object is created. A HARMessage consists of three HAR message clips which can either be in WAV or text format. The message library is called to create a stored message. The message library will check if the user has the appropriate rights. If they do, a stored message is created and calls the message to validate itself for banned words. Note that only the clips that are in text format will be checked for banned words. If the message contains banned words, the newly created objects are deleted and an error is returned. If not, the HARMessage is stored, the newly created stored message data is inserted into the database and the stored message object will be published in the CORBA trading service and other system components will be notified of its existence via the CORBA event service. Note that even though a dictionary check is done at the time of storage, the dictionary is always checked on the server side prior to downloading the message to the HAR.

[image: image78.emf]POA

activate_object

createStoredMessage

create

DictionarySuggestions for any unknown words

performApprovedWordsCheck

[Unexpected Error]

CHART2Exception

[no rights]

AccessDenied

To initiate this use case

the user selected "Add

HAR Text Stored Message"

from the menu and enters

the message.

HARMessage

MessageLibrary

The user will choose ignore,

change, or AddWord for each

unknown word. See

AddApprovedWords sequence

diagram for details regarding

what happens then the user

chooses to add the word.

StoredMessage

CosTrading:RegisterCosEvent:PushConsumerDictionary

Operator

The user can choose to use

the default header and footer

instead of entering a header and

a footer.

setTrailer

setBody

setHeader

[message contains

banned words]

delete

"Check User Rights"

[* for each Clip]

[message contains

banned words]

delete

[message contains

banned words]

DisapprovedMessageContent

push "Stored Message added to library"

export

"Persist the Message"

[message contains

banned words]

DisapprovedMessageContent

[if text clip]

checkForBannedWords

validateMessageContent

create

Figure 78. CreateHARStoredMessage:Basic (Sequence Diagram)

3.1.9.22 ModifyHARStoredMessage:Basic (Sequence Diagram)

A user with the proper functional rights can edit a stored HAR message. The proposed contents for the stored message are checked against the dictionary if it is in text format. An event is pushed via the CORBA Event Service to notify others of the change to the stored message's contents.

[image: image79.emf]"Check user rights"

"Check Message Type"

getMessage

getBody

DictionarySuggestion for each unknown word

performApprovedWordsCheck

validateMessageContent

[unexpected error]

CHART2Exception

push "Stored Message Modified"

setMessage

[no rights]

AccessDenied

[if text clip]

checkForBannedWords

[if HAR text message and

message contains banned words]

DisapprovedMessageContent

"Persist and Update

the Message"

[* for each Clip]

"Format HAR Message"

setBody

Operator

StoredMessageCosEvent:PushConsumerDictionaryHARMessage

The user will alter

their message text

by either ignoring

the suggestion, using

the suggestion, or

adding the word to

the dictionary.

Figure 79. ModifyHARStoredMessage:Basic (Sequence Diagram)

3.1.9.23 DeleteStoredMessage:Basic (Sequence Diagram)

A user with the proper functional rights may remove a stored message from the system. Since a stored message may be used in a plan, a check is made to see if the message is used in a plan so that the user can be warned accordingly. The act of deleting the stored message involves deleting the message, updating the database and pushing an event to notify others that the message has been removed from its library.

[image: image80.emf]POA

deactivate_object

Operator

MessageLibrary

GUI

CosTrading:LookupPlanItemStoredMessageCosTrading:RegisterCosEvent:PushConsumerMessage

"Check user rights"

[no rights]

AccessDenied

removeMessage

query

[for all Plan Items]

[* for each PlanItem]

isUsingObject

[PlanItem is using StoredMessage]

Warn User

removeMessage

remove

withdraw

push "Stored Message Deleted"

[no rights]

AccessDenied

isMessageUsedByAnyPlan

[unexpected error]

CHART2Exception

"Update Database"

[no rights]

"Update Database"

remove

Figure 80. DeleteStoredMessage:Basic (Sequence Diagram)

3.1.9.24 ViewHARStoredMessage:Basic (Sequence Diagram)

The GUI discovers the contents of a HAR stored message during startup. The GUI is notified of changes to the contents of the HAR stored message via a CORBA event channel. When notified of such changes, the GUI updates itself so the user is always shown the latest information pertaining to the HAR stored message.

[image: image81.emf]setTrailer

setBody

query

[for all HARStoredMessage objects]

getMessage

create

push "Stored Message Modified"

getBody

getHeader

push "Stored Message Modified

setHeader

getFooter

StoredMessage

Operator

HARMessageCosTrading:Register

All StoredMessage objects

are published in the trader.

At startup a list of all the

StoredMessage objects

is obtained by querying the trader.

CosEvent:PushConsumer

All the status updates for

StoredMessage objects are

notified to the operator by pushing

events through the CORBA

event service .

Operator

setMessage

Figure 81. ViewHARStoredMessage:Basic (Sequence Diagram)

 Plan Management

3.1.10 Use Case Diagram

This diagram details the actions that an operator may take in relation to plans and plan items.

[image: image82.emf]«extends»

ModifyPlan

Add HAR

Stored

Message

Item

Operator

Figure 82. R1B3ManagePlans (Use Case Diagram)

3.1.10.1 Add HAR Stored Message Item (Use Case)

An operator with the correct functional rights may add a HAR stored message item to an existing plan. This type of plan item associates a message stored in a message library with a HAR device. If the item is later added to the response plan of a traffic event, the message will be sent to the HAR device for broadcast.

3.1.10.2 ModifyPlan (Use Case)

An operator with the correct functional rights may modify an existing plan. Please refer to the use cases that extend this case for details on the types of modifications that are supported.

3.1.10.3 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

Class Diagram

[image: image83.emf]*11*

UniquelyIdentifiable

«interface»

PlanFactoryPlanPlanItem

DMSStoredMessageItemHARStoredMsgItem

getID

getName

createPlan

getPlans

setName

addItem

removeItem

getItems

isUsingObject

remove

setName

remove

isUsingObject

createResponsePlanItem

setResponseMessage(rspPlanItem)

getDMSID

getMessageID

setDMS

setMessage

setConfigData

getHARID

getMessageID

setHAR

setMessage

setConfigData

setDirection

getDirection

Figure 83. PlanManagementClassDiagram (Class Diagram)

3.1.10.4 DMSStoredMessageItem (Class)

This class provides a means for associating a DMS message with a DMS for use in responding to a traffic event.

3.1.10.5 HARStoredMsgItem (Class)

This class provides a means for associating a HAR message with a HAR for use in responding to a traffic event. A directional indicator is stored to specify the SHAZAMs to activate (by default) when the message is activated on the specified HAR.

3.1.10.6 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract class is subclassed for specific actions that can be planned in the system.

3.1.10.7 Plan (Class)

This class encapsulates a Plan, which is a list of DMS and HAR operations called the Plan Items, grouped together. A plan is just a grouping of disparate operations which could be conveniently added to the response plan of a traffic event via a drag and drop operation. When the traffic event's response plan is executed, each DMS or HAR in the response plan will have a message sent to it. Thus, a plan is simply a pre-configured response to a recurring or anticipated traffic event.

3.1.10.8 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans which can be used in the system.

3.1.10.9 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

Sequence Diagrams

3.1.10.10 ModifyPlan:AddHARStoredMessageItem (Sequence Diagram)

A user with the proper functional rights may add a HARStoredMessageItem to a plan. This sequence diagram shows the modification of a plan to add a HARStoredMessageItem to it. The process involves setting the HAR associated with the stored message. The database is updated and the HARStoredMessageItemAdded event notification is sent out to interested parties.

[image: image84.emf]PlanHARStoredMsgItem

CosEvent:PushConsumer

Operator

setHAR

Update Database

[no rights]

AccessDenied

[no rights]

AccessDenied

addItem

push

[HARStoredMsgItemAdded]

success

Figure 84. ModifyPlan:AddHARStoredMessageItem (Sequence Diagram)

Dictionary Management

3.1.11 Use Case Diagram

This diagram shows the actions that an operator may take that affect or utilize the system dictionaries.

[image: image85.emf]Administrator

View

Banned

Words

Add

Approved

Word

Remove

Approved

Word

View

Approved

Words

System

Check

Spelling

Check For

Banned Words

Operator

Add

Banned

Word

Remove

Banned

Word

Figure 85. ManageDictionaries (Use Case Diagram)

3.1.11.1 Add Approved Word (Use Case)

An operator with the correct functional rights (administrator) may add a word to the system list of approved words.

3.1.11.2 Add Banned Word (Use Case)

An operator with the correct functional rights (administrator) may add a banned word to the system list of banned words. This word will no longer be allowed for display on messaging devices.

3.1.11.3 Check For Banned Words (Use Case)

An operator (or the system) validates a text message by checking the words against the list of banned words for a particular device type. The check for banned words will be case insensitive.

3.1.11.4 Check Spelling (Use Case)

An operator checks the spelling of a text message by checking the words against the list of approved words for a particular device type. The comparison against the list of approved words will be case insensitive.

3.1.11.5 Administrator (Actor)

An administrator is a CHART II user that has functional rights assigned to allow them to perform administrative tasks, such as system configuration and maintenance.

3.1.11.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for system access.

3.1.11.7 Remove Approved Word (Use Case)

An operator with the correct functional rights (administrator) may remove a word from the system list of approved words.

3.1.11.8 Remove Banned Word (Use Case)

An operator with the correct functional rights (administrator) may use the system to remove a word from the system list of banned words. Removing the word from the banned words list will allow that word to be used on system messaging devices.

3.1.11.9 View Banned Words (Use Case)

A user with the correct functional rights (administrator) may view the current list of banned words in the system.

3.1.11.10 System (Actor)

The System actor represents any software component of the CHART II system. It is used to model uses of the system which are either initiated by the system on an interval basis, or are an indirect by-product of another use cases that another actor has initiated.

3.1.11.11 View Approved Words (Use Case)

An operator with the correct functional rights (administrator) may view the current list of system approved words.

Class Diagram

[image: image86.emf]*

DictionarySuggestion

1*

*

1

*

1

1*

Message

1

Chart2DMS

Chart2HAR

UniquelyIdentifiable

«interface»

Dictionary

DictionaryWord

setMessage(token, TrafficEvent, MessageContent)

blank(token, TrafficEvent)

getArbitrationQueue

getSHAZAMMessage

setSHAZAMMessage

createDMSStoredMsgItem

addMsgNotifier

removeMsgNotifier

createPlanItem

updateDateTimeField

setMessage(TrafficEvent, MessageData)

getMonitoredAudio(int numSecs)

-activateMsgNotifiers

-deactivateMsgNotifiers

-setControllingOpCenter

getID

getName

supportsVerboseDevices()

checkForBannedWords(String words, String delimiter, type)

addBannedWords(sequence<Word>, wordList)

addApprovedWords(sequence<Word>, wordList)

removeBannedWords()

removeApprovedWords()

getBannedWords()

getApprovedWords()

performApprovedWordsCheck(String words, String delimiters, type)

String m_text

bitmask m_type

sequence m_wordlist

String m_misspelledword

validateMessageContent

remove

persist

Figure 86. DictionaryClassDiagram (Class Diagram)

3.1.11.12 Chart2DMS (Class)

This class represents a CHART II Dynamic Message Sign (DMS). It is derived from the generic DMS and encapsulates the CHART II business process that provides the rules for control and usage of a DMS device.

3.1.11.13 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart II business rules, such as arbitration queues, linking device usage to traffic events, and the concept of a shared resource.

3.1.11.14 DictionarySuggestion (Class)

This class is used to return a list of words that may be used to replace a misspelled word returned from the Dictionary's performApprovedWordsCheck.

3.1.11.15 DictionaryWord (Class)

This class contains each individual word in a dictionary. Each word is banned or approved for the devices represented in the bitmask.

3.1.11.16 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific message data.

3.1.11.17 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS or Broadcast from a HAR. This class is also used to spellcheck messages before display or broadcast. In addition to methods for checking the words, it has methods to allow the contents of the dictionary to be changed.

3.1.11.18 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

Field Communications

3.1.12 Class Diagram

[image: image87.emf]DisconnectException

PortOpenFailure

ModemNotRespondingModemConnectFailure

ModemResponseCode

«enumeration»ModemInitFailure

FlowControl

«enumeration»

DataBits

«enumeration»

StopBits

«enumeration»

CommPortConfig

«typedef»

NoPortsFoundDataPortIOException

Future port types

DataPort

«interface»

ModemPort

«interface»

DirectPort

«interface»

Parity

«enumeration»

Priority

«enumeration»

PortType

«enumeration»

Port

«interface»

PortManager

«interface»

ConnectFailure

UniquelyIdentifiable

«interface»

PortStatus

«enumeration»

GetPortTimeout

*1

VoicePort

«interface»

SpeechEngine

«interface»

1

*

PARITY_EVEN

PARITY_ODD

PARITY_NONE

PRIORITY_POLLING

PRIORITY_ON_DEMAND

ISDN_MODEM

POTS_MODEM

DIRECT_RS232

getStatus():PortStatus

disconnect():void

getPort(PortType, int maxWaitMillis, Priority):Port

releasePort(Port):void

string reason

STATUS_OK

STATUS_MARGINAL

STATUS_FAILED

STATUS_DISABLED-future

string reason;

string reasonstring modemCmd;

ModemResponseCode rspCode;

MODEM_RSP_OK

MODEM_RSP_CONNECT

MODEM_RSP_RING

MODEM_RSP_NO_CARRIER

MODEM_RSP_ERROR

MODEM_RSP_CONNECT_1200

MODEM_RSP_NO_DIAL_TONE

MODEM_RSP_BUSY

MODEM_RSP_NO_ANSWER

string modemCmd;

ModemResponseCode rspCode;

FLOWCONTROL_NONE

FLOWCONTROL_RTS_CTS

FLOWCONTROL_XON_XOFF

DATABITS_5

DATABITS_6

DATABITS_7

DATABITS_8

STOPBITS_1

STOPBITS_2

STOPBITS_1_5

int m_baudRate

DataBits m_dataBits

StopBits m_stopBits

Parity m_parity

FlowControl m_flowControl

string reason

send(byte[] data):void

receive(long initialTimeoutMillis,

 long interCharTimeoutMillis):byte[]

connect(CommPortConfig config,

 String phoneNo):void

connect(CommPortConfig config):void

connect(String phoneNumber)

sendDTMF(String dtmf)

playText(String preDTMF, String text, String postDTMF)

playWav(String preDTMF, WavFile wav, String postDTMF)

record(int numSeconds):WavFile

convertTextToSpeech(String text):WavFile

Figure 87. FieldCommunications (Class Diagram)

3.1.12.1 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

3.1.12.2 DataBits (Class)

This enumeration defines the valid values for data bits that may be set in a CommPortConfig structure.

3.1.12.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a receive method that allows a chunk of all available data to be received. This method prevents callers from having to issue many receive calls to parse a device response. Instead, this receive call returns all available data received within the timeout parameters. The caller can then parse the data within a local buffer. Using this mechanism, device command and response should require only one call to send and one call to receive.

3.1.12.4 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

3.1.12.5 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN and POTS modems can be implemented under this interface.

3.1.12.6 NoPortsFound (Class)

This exception is thrown when a port is requested from a PortManager that does not have any of the requested type of port (available or in-use).

3.1.12.7 DisconnectException (Class)

This exception is thrown when an error is encountered while disconnecting. There is no action that can be taken by the catch handler for this exception except to warn the user. The port will be closed and should be released as normal even if this exception is caught.

3.1.12.8 FlowControl (Class)

This enumeration defines the valid types of flow control that may be set in a CommPortConfig structure.

3.1.12.9 ModemConnectFailure (Class)

This exception is thrown when there is an error establishing a remote connection via a modem during a connection attempt on a ModemPort. This exception is generated when there is an unfavorable result to the ATDT command on the modem.

3.1.12.10 ModemResponseCode (Class)

This enum defines the result codes for a standard modem.

3.1.12.11 ModemInitFailure (Class)

This exception is thrown when there is an error initializing the modem during a connection attempt on a ModemPort.

3.1.12.12 ModemNotResponding (Class)

This exception is thrown when there is a failure to command a modem because the modem is not responding to commands.

3.1.12.13 PortOpenFailure (Class)

This exception is thrown if there is an error opening the port while attempting a connection. This exception would most likely only occur if there is another application accessing the physical com port, which would be true if debugging activities were being done on a port while the FieldCommunications service is still running.

3.1.12.14 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect call needs only to open the communications port.

3.1.12.15 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status. OK signifies the port is working properly. MARGINAL signifies errors have been experienced during recent use of the port. FAILED indicates the port is not working at all.

3.1.12.16 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is guaranteed not to match the identifier of any other uniquely identifiable objects in the system.

3.1.12.17 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that can be thrown during a connection attempt.

3.1.12.18 Parity (Class)

This enumeration defines the valid values for parity that may be set in a CommPortConfig structure.

3.1.12.19 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

3.1.12.20 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a PortManager. ON_DEMAND is given higher priority than POLLING.

3.1.12.21 SpeechEngine (Class)

This class provides services for converting text to speech. It acts as a wrapper for the third party speech engine.

3.1.12.22 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port of a given type cannot be fulfilled within the timeout specified.

3.1.12.23 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All ports must be able to supply their status when requested.

3.1.12.24 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The getPort method is used to request the use of a port from the PortManager. Requests for ports specify the type of port needed, the priority of the request, and the maximum time the requester is willing to wait if a port is not immediately available. When the port manager returns a port, the requester has exclusive use of the port until the requester releases the port back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.12.25 StopBits (Class)

This enumeration defines the valid values for stop bits that may be set in a CommPortConfig structure.

3.1.12.26 VoicePort (Class)

A voice port object provides access to a port on a telephony board. It provides methods to connect it to a destination phone number and perform operations while connected that result in DTMF or voice being sent across the telephone connection.

Acronyms

The following acronyms appear throughout this document:

CHART
Coordinated Highways Action Response Team

CORBA
Common Object Request Broker Architecture

DBMS
Database Management System

DMS
Dynamic Message Sign

DTMF
Dual Tone Multiple Frequency

FMS
Field Management Station

GUI
Graphical User Interface

HAR
Highway Advisory Radio

IDL
Interface Definition Language

ISDN
Integrated Services Digital Network

ITS
Intelligent Transportation Systems

NTCIP
National Transportation Communications for ITS Protocol

OMG
Object Management Group

ORB
Object Request Broker

PC
Personal Computer

POTS
Plain Old Telephone System

R1B3
Release 1, Build 3

TTS
Text To Speech

UML
Unified Modeling Language

Bibliography
CHART II Business Area Architecture Report, document no. M361-BA-005R0, Computer Sciences Corporation and PB Farradyne, Inc., April 28, 2000.
CHART II System Requirements Specification Release 1 Build 2, document no. M361-RS-002R1, Computer Sciences Corporation and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG Document 99-10-07.

CHART II R1B2 High Level Design, document no. M362-DS-005R0, Computer Sciences Corporation and PB Farradyne, Inc., April 7, 2000.
FMS R1B2 High Level Design, document no. M303-RS-002R0, Computer Sciences Corporation and PB Farradyne, Inc., June 9, 2000.
Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997.

Glossary

Arbitration Queue
A prioritized queue containing messages for display or broadcast on a traveler information device.

Communications Server
A PC outfitted with communications hardware and the FMS Communications Service software.

DMS
A Dynamic Message Sign that is used to display traffic messages to motorists.

Functional Right
A privilege that gives a user the right to perform a particular system action or related group of actions. A functional right may be limited to pertain only to those shared resources owned by a particular organization or can pertain to the shared resources of all organizations.

Graphical User Interface
Part of a software application that provides a graphical interface to its user.

HAR
A localized AM radio transmitter that can be programmed to broadcast traffic information.

HAR Message Notifier
A term used to generically describe a device that is used to notify motorists that a traffic alert is being broadcast by a HAR. This term is applied to DMS and SHAZAM devices.

Message Library
A collection of stored messages that can be displayed on a DMS or broadcast on a HAR.

Operations Center
A center where one or more users may log in to operate the Chart II system. Operations centers are assigned responsibility for shared resources that are controlled by users who are logged in at that operations center.

Operator
A Chart II user that works at an Operations Center.

Plan
A collection of plan items that can be added to the response plan of a traffic event as a group.

Plan Item
An action in the system that can be set up in advance to be activated one or more times in the future. Plan items must be contained in a plan. Specific types of plan items exist for specific functionality. A plan item may be copied to a traffic event response plan and subsequently activated.

Response Plan
A collection of response plan items created in response to a traffic event that can be activated as a group..

Response Plan Item
An action in the system that can be set up in response to a traffic event. Response plan items must be contained in a response plan. Specific types of response plan items exist for specific functionality. A response plan item carries out its specific task when activated

Port
A software object used to model a physical communications port.

Port Manager
A software object that manages access to one or more communications ports.

Protocol Handler
A software object that contains code that encapsulates the specific communications sequences required to command a field device.

Shared Resource
A resource that is owned by an organization. A user may be granted access to a shared resource owned by an organization through the functional rights scheme.

SHAZAM
A fixed sign with beacons that can be remotely enabled / disabled. These signs contain text that alerts motorists to tune their radio to a specific frequency to hear a traffic alert when the sign’s beacons are flashing.

Stored Message
A message that may be broadcast on a HAR or displayed on a DMS.

Transferable Shared Resource
A shared resource that can be transferred from one operations center to another by a user with the appropriate functional rights.

User
A user is someone who uses the CHART II system. Users can perform different operations in the system depending upon the roles they have been granted.

Appendix A: CORBA Information

CORBA

CORBA is an architecture specified by the Object Management Group (OMG) for distributed object oriented systems. The CORBA specification provides a language and platform independent way for object oriented client/server applications to interact. The CORBA specification includes an Object Request Broker (ORB), which is the middleware used to allow client/server relationships between objects. Using a vendor’s implementation of an OMG ORB, software applications can transparently interact with software objects anywhere on the network without the application having to know the details of the network communications.

Interfaces to objects deployed in a CORBA system are specified using OMG Interface Definition Language (IDL). Applications written in a variety of languages or deployed on a variety of computing platforms can use the IDL to interact with the object, regardless of the language or computing platform used to implement the object.

CORBA Services

The OMG CORBA specification includes specifications for application servers that provide basic functionality that is commonly needed by distributed object systems. While there are specifications for many such services, many services have not yet been implemented. Of the CORBA Services that are available, the CORBA Event Service and CORBA Trading Service are utilized in the CHART II system. A description of each of these services follows.

CORBA Event Service

The CORBA Event Service provides for a way to provide data updates within the system in a loosely coupled fashion. This loose coupling allows applications with data to share to pass the information via the event service without needing to have knowledge of others that are consuming the data.

Data passed through the event service is done using event channels. Many different types of events may be passed on a single event channel. Interested parties may become consumers on a given event channel and receive all events passed on the channel.

The CHART II system makes use of multiple event channels to allow event consumers to be more selective about the type of events they receive. Also, event channels of the same type may exist in multiple regions, allowing the CHART II system to be expandable and multi-regional. Event channels used in the CHART II system are published in the CORBA trading service to allow others to select which events they wish to consume.

CORBA Trading Service

The CORBA Trading Service is an online database of objects that exist in a distributed object system. Servers that have services to offer publish their objects in the trading service. Applications that wish to use the services provided by a server can query the Trading Service to find objects based on their type or attributes.

CORBA Trading Services can be linked together into a federation. Queries done on single Trading Service can be made to cascade to all linked Trading Services as well. This feature allows Trading Services serving single regions to be linked together, providing seamless access to all objects in the system.

The CHART II System utilizes the CORBA Trading Service to allow the GUI to discover objects in the system with which it allows the user to interact. Using the linking capabilities of the Trading Service, the CHART II system can be distributed to multiple districts with the GUI still able to provide a unified view of the system to the users.

Appendix B: Use Case Mapping

Requirement ID
Requirement Text
Use Case

CHART-418
The system shall inform the operators of a HAR failure.
View Device Status

CHART-974
"Reset HAR controller" is a maintenance mode command.
Reset HAR

CHART-976
"Setup HAR controller" is a maintenance mode command.
Setup HAR

CHART-994
"Set HAR transmitter on/off" is a maintenance mode command.
Turn On HAR Transmitter / Turn Off HAR Transmitter

CHART-996
"Store message in HAR controller slot" (except the immediate message slot) is a maintenance mode command.
Store HAR Message In Controller

CHART-997
"Delete message from HAR controller slot" is a maintenance mode command.
Delete HAR Message From Controller

CHART-797
The system shall enable the message queue for a DMS that is set to online.
Put DMS Online

CHART-86
The system shall allow a suitably privileged user to set the broadcast message for a selected HAR.
Set HAR Message

CHART-459
The system shall allow a suitably privileged user to set the default message for a selected HAR.
Modify HAR Settings

CHART-87
The system shall allow a suitably privileged user to specify the SHAZAM state for each SHAZAM associated with a HAR, if it has a SHAZAM.
Set HAR Message

CHART-88
The system shall set the default message as the broadcast message for a HAR if the current message is inactivated.
Blank HAR

CHART-89
The system shall allow a suitably privileged user to set the current message for a selected group of HARs.
Set HAR Message

CHART-91
The system shall support sending messages to at least four HARs simultaneously.

CHART-458
The system shall allow a suitably privileged user to designate from zero to at least eight SHAZAMs for a specified HAR.
Associate Message Notifier With HAR

CHART-457
The system shall allow a suitably privileged user to designate from zero to at least eight DMSs to be used as a SHAZAM for a specified HAR.
Associate Message Notifier With HAR

CHART-92
If a HAR has SHAZAMs associated with it and a message that requires SHAZAMs on is sent to it then the specified SHAZAMs shall be turned on only after a message has been activated on the HAR.
Set HAR Message

CHART-93
If a HAR has active SHAZAMs then the SHAZAMs shall be turned off before the current message is deactivated.
Blank HAR

CHART-94
The system shall allow a suitably privileged user to issue the reset command to the controller for a selected HAR.
Reset HAR

CHART-297
The system shall log a message to the operations log for Reset HAR controller.
Reset HAR

CHART-710
The system shall issue the setup command immediately after a reset command is sent to a HAR controller.
Reset HAR

CHART-460
The system shall allow a suitably privileged user to issue the setup command to the controller for a selected HAR.
Setup HAR

CHART-465
The system shall log a message to the operations log for Setup HAR controller.
Setup HAR

CHART-703
The system shall allow a suitably privileged user select the HAR controller slot number for a message.
Modify HAR Settings

CHART-708
The default slot number for the default message shall be slot 2.
Modify HAR Settings

CHART-709
The default slot number for the dynamic message shall be slot 7.
Modify HAR Settings

CHART-713
The system shall allow a suitably privileged user to delete a message from a designated slot in the HAR controller.
Delete HAR Message from Controller

CHART-714
The system shall log a message to the operations log for deletion of a message from a HAR controller.
Delete HAR Message from Controller

CHART-711
The system shall support a SHAZAM device reset command that sets a SHAZAM to its last known state.
Reset SHAZAM to Last Known State

CHART-712
The system shall provide the capability to periodically issue the SHAZAM reset command to a SHAZAM based on a SHAZAM specific reset interval parameter.
Reset SHAZAM to Last Known State

CHART-715
The system shall allow a suitably privileged user to play a message from a selected slot in the HAR controller.
Format HAR Message

CHART-726
The system shall provide the capability for a user at a workstation to listen to a message stored in a HAR controller.
Listen To HAR Message / Listen to HAR Monitor Line

CHART-716
The system shall allow a suitably privileged user to turn off the transmitter for a HAR.
Turn Off HAR Transmitter

CHART-717
The system shall log a message to the operations log for turning off the transmitter for a HAR.
Turn Off HAR Transmitter

CHART-725
The system shall support the capability to set SHAZAM devices offline without affecting the associated HAR.
Take SHAZAM Offline

CHART-724
The system shall set to off a SHAZAM device that is placed offline.
Take SHAZAM Offline

CHART-743
The system shall allow a suitably privileged user to set a HAR offline.
Take HAR Offline

CHART-738
The system shall set the default message as the current message and turn off the transmitter of a HAR that is set to offline.
Take HAR Offline

CHART-1102
If the attempt to set the default message as the current message or turn off the transmitter of a HAR that is being set to offline fails then the system shall clear the controlling Center and current message and set the HAR offline.
Take HAR Offline

CHART-740
The system shall place offline all SHAZAM devices associated with a HAR when the HAR is set to offline.
Take HAR Offline

CHART-847
The system shall allow a suitably privileged user to set a HAR online.
Put HAR Online

CHART-739
The system shall turn on the transmitter of a HAR that is set to online
Put HAR Online

CHART-1100
The system shall load the default message to a HAR and set the default message as the current message when the HAR is set to online.
Put HAR Online

CHART-1101
If the attempt to load or set the default message fails when placing the HAR online then the system shall not place the HAR online.
Put HAR Online

CHART-741
The system shall allow the user to selectively place online SHAZAM devices associated with a HAR when the HAR is set to online.
Put HAR Online / Put SHAZAM Online

CHART-1098
The system shall allow a suitably privileged user to set a HAR to maintenance mode.
Put HAR in Maintenance Mode

CHART-1099
The system shall set the default message as the current message on a HAR that is set to maintenance mode.
Put HAR in Maintenance Mode

CHART-1103
If the attempt to set the default message as the current message fails on a HAR being set to maintenance mode then the system shall clear the controlling Center and current message and set the HAR to maintenance mode.
 Put HAR in maintenance mode

CHART-1105
The system shall not allow a user to set an online HAR, currently broadcasting a message other than the default message, to offline or maintenance mode unless that user is logged in to the controlling Center or has override rights.
Put HAR in maintenance mode / Take HAR offline

CHART-109
The navigator shall identify the current message for each HAR device.
View HAR Status

CHART-727
The navigator shall show the phone numbers associated with a HAR.
View HAR Status

CHART-728
The navigator shall show the phone number for the HAR controller.
Modify HAR Settings

CHART-729
The navigator shall show the phone number for the HAR monitor line.
View HAR Status

CHART-730
The navigator shall show the phone number for each SHAZAM associated with the HAR.
Modify SHAZAM Settings

CHART-119
The system shall provide a HAR message editor that will allow a user to format a HAR message.
Format HAR Message

CHART-120
For text messages the HAR message editor shall display the message header, message body, and message trailer.
Format HAR Message

CHART-121
The HAR message editor shall allow a user to enter message text into a text field.
Format HAR Message

CHART-122
The HAR message editor shall allow a user to hear the result of text to speech conversion of the message header, message body, and message trailer.
Listen To HAR Message

CHART-123
The HAR message editor shall display the run time of the spoken message in minutes and seconds.
Format HAR Message

CHART-124
The HAR message editor shall alert the user if the message run time exceeds two minutes.
Format HAR Message

CHART-694
The HAR message editor shall support the recording of voice messages.
Record Audio HAR Message

CHART-695
The HAR message editor shall provide audio control functions for controlling the playback of audio messages.
Record Audio HAR Message

CHART-696
The HAR message editor shall provide a PLAY button to play an audio file.
Record Audio HAR Message

CHART-697
The HAR message editor shall provide a STOP button to stop the playback of an audio file.
Record Audio HAR Message

CHART-698
The HAR message editor shall provide a PAUSE button to pause the playback of an audio file.
Record Audio HAR Message

CHART-699
The HAR message editor shall provide the capability to construct a single continuous message from any of a message header, body and trailer.
Format HAR Message

CHART-718
The HAR message editor shall provide the capability to insert delays between message segments.
Format HAR Message

CHART-720
The HAR message editor shall provide the capability to construct a message for broadcast from messages currently residing in controller slots.
Format HAR Message

CHART-721
The HAR message editor shall support an optional time/date field in the message header.
Format HAR Message

CHART-722
The system shall support the automatic update of the HAR message header time/date field.
Update HAR Message Date/Time

CHART-723
The HAR message header time/date field shall support customizable generalized time periods relating time of day to a period of day (e.g. 1200-1700 as afternoon).
Update HAR Message Date/Time

CHART-135
The navigator shall allow a suitably privileged user to drag a HAR message from a message library to a HAR.
GUI

CHART-462
The system shall allow a suitably privileged user to specify the message header and trailer for a specified HAR.
Modify HAR settings

CHART-138
The system shall notify the initiating operator should an attempt to control a HAR fail.
Set HAR Message, Put HAR Online,

Blank HAR,

Turn On HAR Transmitter,

Turn Off HAR Transmitter,

Put HAR in Maintenance Mode,

Take HAR offline,

Store HAR Message In Controller,

Delete HAR Message From Controller, Reset HAR, Setup HAR

CHART-719
The navigator shall provide the capability to display the controller slots in use for a HAR.
Modify HAR Settings

CHART-161
The system shall support the conversion of text to speech files compatible with standard audio formats.
Set HAR Message

CHART-454
The system shall support the recording of speech into files compatible with standard audio formats.
Record Audio Message

CHART-165
The system shall support libraries containing HAR messages.
Create HAR Stored Message

CHART-455
The system shall support storing HAR messages in libraries in text format.
Create HAR Stored Message

CHART-456
The system shall support storing HAR messages in libraries in a standard audio format.
Create HAR Stored Message

CHART-799
The system shall allow the user to display attributes of a HAR library message.
View HAR Stored Message

CHART-805
The system shall display the message description for a HAR library message.
View HAR Stored Message

CHART-806
The system shall display the message category for a HAR library message.
View HAR Stored Message

CHART-807
The system shall display the message length in minutes and seconds for a HAR library message.
View HAR Stored Message

CHART-175
The system shall allow a suitably privileged user to set a message on a HAR from a message stored in a HAR message library.
GUI

CHART-773
The system shall support a banned words dictionary for HAR devices.
Manage Dictionaries

CHART-775
The system shall support a spell check dictionary for HAR devices.
Manage Dictionaries

CHART-205
The allowable plan item actions shall include putting a library message on a HAR.
Add HAR Stored Message Item

CHART-866
The system shall allow a suitably privileged user to deactivate a plan.
Revoke Response Items

CHART-867
Upon plan deactivation the system shall remove device queue entries associated with the plan.
Revoke Response Items

CHART-222
The system shall support the queueing of messages to DMS devices.
Add Message To Device Queue

CHART-223
The system shall support the queueing of messages to HAR devices.
Add Message To Device Queue

CHART-224
Messages shall be ordered in a queue based on their priority.
Evaluate Device Queue Entries

CHART-225
A message entering a device queue with a higher priority than the current message on the device shall preempt the current message.
Evaluate Device Queue Entries

CHART-771
A message entering a device queue with the same priority as the current message shall preempt the current message if the associated event is closer to the device than the current message event.
Evaluate Device Queue Entries

CHART-226
A preempted message shall be returned to the device queue.
Evaluate Device Queue Entries

CHART-794
The system shall log a message to the operations log when a message is preempted.
Evaluate Device Queue Entries

CHART-790
The system shall maintain attributes for messages in a device queue.
Add Message To Device Queue

CHART-791
Device queue message attributes shall include the event the message is associated with.
Add Message To Device Queue

CHART-792
Device queue message attributes shall include the Center responsible for the message.
Add Message To Device Queue

CHART-227
The system shall support the assignment of priorities to queued messages based on the message type/source.
Evaluate Device Queue Entries

CHART-228
The system shall support a message type/source of Incident - Operator Control.
Evaluate Device Queue Entries

CHART-230
The system shall support a message type/source of Roadwork - Operator Control.
Evaluate Device Queue Entries

CHART-231
The system shall support a message type/source of Congestion - Operator Control.
Evaluate Device Queue Entries

CHART-232
The system shall support a message type/source of Weather Alert - Operator Control.
Evaluate Device Queue Entries

CHART-233
The system shall support a message type/source of Special Event - Operator Control.
Evaluate Device Queue Entries

CHART-234
The system shall support a message type/source of Recurring Congestion - Operator Control.
Evaluate Device Queue Entries

CHART-239
The system shall support a message type/source of Safety Message - Operator Control.
Evaluate Device Queue Entries

CHART-241
The system shall support a message type/source of DMS as SHAZAM - Operator Control.
Evaluate Device Queue Entries

CHART-243
The assignment of priorities to event types shall be a system configuration item.
Evaluate Device Queue Entries

CHART-244
A suitably privileged user shall be able to modify the priority of a message in a queue.
Evaluate Device Queue Entries

CHART-265
When an event is closed the system shall remove all messages from devices and device queues associated with the event.
Close Traffic Event

CHART-294
The system shall log event messages associated with HAR activities.
Evaluate Device Queue Entries

CHART-295
The system shall log a message associated with an event for Set HAR message.
Evaluate Device Queue Entries

CHART-296
The system shall log a message associated with an event for inactivate HAR message.
Evaluate Device Queue Entries

� EMBED MSPhotoEd.3 ���

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo1GqwsewBTAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo1GqwsewBTAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASosMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASosMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASonUAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASonUAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSuFAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSuFAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgCAAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgCAAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQXYAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQXYAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgKwAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgLoAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgLoAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgPMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgArAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgArAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTioiAQCM89CAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTioiAQCM89SAGUAAQAAAAEA -sys SystemVersion:UFAJxBTipelMCM1bKAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCM1vHAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTioiAQCM89CAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTioiAQCM89SAGUAAQAAAAEA -sys SystemVersion:UFAJxBTipelMCM1bKAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCM1vHAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShzbAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShzbAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShzoAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgCKAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgCKAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShMLAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShMLAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShCRAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASoyMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASoyMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShnIAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShnbAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShBTAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShBeAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASlUDAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh6vAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh6vAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShCgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShCgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASlUPAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASlUPAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh51AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh51AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShCRAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUTCAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUTCAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQPjAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQPjAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQYgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQYgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCMyM5AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCMyM5AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCM7qvAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTipelMCM7qvAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgPAAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRtgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRtgAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZR6XAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZR8vAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZR8vAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSElAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSElAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh0kAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh0kAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTAKAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTAKAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh0xAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh0xAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTECAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTECAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTMLAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTQGAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTQGAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgMsAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgMsAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTffAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTkdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTkdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZToOAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZToOAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTvYAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTvYAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTzqAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZTzqAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT5gAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT5gAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT8gAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT8gAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT.eAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZT.eAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUCdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUCdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUEMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUEMAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUKjAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUKjAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASho2AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQJ2AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQJ2AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRjzAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRjzAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRm.AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh2IAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh2IAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShGhAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAAShGhAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgAdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgAdAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSYqAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh78AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh78AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUL7AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUL7AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUOmAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUOmAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgBTAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgBTAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRW9AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRW9AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRc3AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZRc3AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgSbAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgSbAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSBDAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSBDAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSMsAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSMsAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZShaAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZShaAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSppAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSppAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgBDAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgBDAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQTFAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQTFAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZR12AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZR12AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSk9AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSPSAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSPSAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUNBAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZUNBAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgA4AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASgA4AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQUWAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQUWAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSoCAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZSoCAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASoomAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASoomAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQN1AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTow7poBZQN1AGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATASTART_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh8hAGUAAQAAAAEA

�PAGE \# "'Page: '#'�'" �Page: 1���ATAEND_ -proj Project:UFAJuMjbdrmsAOgAEAGUAAQAAAAAA -config ConfigVersion:UFAJxBTovvOwBZbFZAGUAAQAAAAEA -phase PhaseVersion:UFAJxBTovvOwBZbNJAGUAAQAAAAEA -sys SystemVersion:UFAJxBTovvOwBZftPAGUAAQAAAAEA -diag Graph:UFAJxBTo2NHAASh8hAGUAAQAAAAEA

[image: image91.png]

PAGE

[image: image92.wmf]_989147791.bin

_968676586.bin

